2019
Autores
Faia, R; Pinto, T; Vale, Z; Corchado, JM; Soares, J; Lezama, F;
Publicação
Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018
Abstract
The use of metaheuristics to solve real-life problems has increased in recent years since they are easy to implement, and the problems become easy to model when applying metaheuristic approaches. However, arguably the most important aspect is the simulation time since results can be obtained from metaheuristic methods in a much smaller time, and with a good approximation to the results obtained with exact methods. In this work, the Genetic Algorithm (GA) metaheuristic is adapted and apphed to solve the optimization of electricity markets participation portfolios. This work considers a multiobjective model that incorporates the calculation of the profit and the risk incurred in the electricity negotiations. Results of the proposed approach are compared to those achieved with an exact method, and it can be concluded that the proposed GA model can achieve very close results to those of the deterministic approach, in much quicker simulation time. © 2018 IEEE.
2019
Autores
Rodriguez Fernandez, J; Pinto, T; Silva, F; Praca, I; Vale, Z; Corchado, JM;
Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
Automated negotiation plays a crucial role in the decision support for bilateral energy transactions. In fact, an adequate analysis of past actions of opposing negotiators can improve the decision-making process of market players, allowing them to choose the most appropriate parties to negotiate with in order to increase their outcomes. This paper proposes a new model to estimate the expected prices that can be achieved in bilateral contracts under a specific context, enabling adequate risk management in the negotiation process. The proposed approach is based on an adaptation of the Q-Learning reinforcement learning algorithm to choose the best scenario (set of forecast contract prices) from a set of possible scenarios that are determined using several forecasting and estimation methods. The learning process assesses the probability of occurrence of each scenario, by comparing each expected scenario with the real scenario. The final chosen scenario is the one that presents the higher expected utility value. Besides, the learning method can determine which is the best scenario for each context, since the behaviour of players can change according to the negotiation environment. Consequently, these conditions influence the final contract price of negotiations. This approach allows the supported player to be prepared for the negotiation scenario that is the most probable to represent a reliable approximation of the actual negotiation environment.
2019
Autores
Nascimento, J; Pinto, T; Vale, Z;
Publicação
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE
Abstract
Futures contracts are a valuable market option for electricity negotiating players, as they enable reducing the risk associated to the day-ahead market volatility. The price defined in these contracts is, however, itself subject to a degree of uncertainty; thereby turning price forecasting models into attractive assets for the involved players. This paper proposes a model for futures contracts price forecasting, using artificial neural networks. The proposed model is based on the results of a data analysis using the spearman rank correlation coefficient. From this analysis, the most relevant variables to be considered in the training process are identified. Results show that the proposed model for monthly average electricity price forecast is able to achieve very low forecasting errors.
2019
Autores
Pinto, T; Santos, G; Vale, Z;
Publicação
AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS
Abstract
Power and energy systems lack decision-support systems that enable studying big problems as a whole. The interoperability between multi-agent systems that address specific parts of the global problem is essential. Ontologies ease interoperability between heterogeneous systems providing semantic meaning to the information exchanged between the various parties. This paper presents the practical application of a society of multi agent systems, which uses ontologies to enable the interoperability between different types of agent-based simulators, directed to the simulation and operation of electricity markets, smart grids and residential energy management. Real data-based demonstration shows the proposed approach advantages in enabling comprehensive, autonomous and intelligent power system simulation studies.
2019
Autores
Pinto, T; Vale, Z;
Publicação
AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS
Abstract
This work demonstrates a system that provides decision support to players in electricity market negotiations. This contribution is provided by ALBidS (Adaptive Learning strategic Bidding System), a decision support system that includes a large number of distinct market negotiation strategies, and learns which should be used in each context in order to provide the best expected response. The learning process on the best negotiation strategies to use at each moment is developed by means of several integrated reinforcement learning algorithms. ALBidS is integrated with MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), which enables the simulation of realistic market scenarios using real data.
2019
Autores
Silva, F; Pinto, T; Vale, Z;
Publicação
AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS
Abstract
This paper presents a new multi-agent decision support system with the purpose of aiding bilateral contract negotiators in the pre-negotiation phase, through the analysis of their possible opponents. The application area of this system is the electricity market, in which players trade a certain volume of energy at a specified price. Consequently, the main output of this system is the recommendation of the best opponent(s) to trade with and the target energy volume to trade with each of the opponents. These recommendations are achieved through the analysis of the possible opponents' past behavior, namely by learning on their past actions. The result is the forecasting of the expected prices against each opponent depending on the volume to trade. The expected prices are then used by a game-theory based model, to reach the final decision on the best opponents to negotiate with and the ideal target volume to be negotiated with each of them.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.