2018
Autores
Soares, J; Lezama, F; Canizes, B; Ghazvini, MAF; Vale, Z; Pinto, T;
Publicação
20th Power Systems Computation Conference, PSCC 2018
Abstract
The integration of renewable generation and electric vehicles (EVs) into smart grids poses an additional challenge to the stochastic energy resource management problem due to the uncertainty related to weather forecast and EVs user-behavior. Moreover, when electricity markets are considered, market price variations cannot be disregarded. In this paper, a two-stage stochastic programming approach to schedule the day-ahead operation of energy resources in smart grids under uncertainty is presented. A realistic case study is performed using a large-scale scenario with nearly 4 million variables with the goal to minimize expected operation cost of energy aggregators. Three scenarios are analyzed to understand the effect of market transactions and external suppliers on the aggregator model. The results suggest that the market transactions can reduce expected cost, while the external supplier offers risk-free price. In addition, the performance metric shows the superiority of the stochastic approach over an equivalent deterministic model. © 2018 Power Systems Computation Conference.
2018
Autores
Madureira, B; Pinto, T; Fernandes, F; Vale, Z; Ramos, C;
Publicação
2017 Intelligent Systems Conference, IntelliSys 2017
Abstract
This paper proposes an Artificial Neural Network (ANN) based approach to classify different contexts, with the goal of enhancing the management of residential energy resources. The increasing penetration of renewable based generation has completely changed the paradigm of the power and energy sector. The intermittent nature of these resources requires the system to incentivize the adaptability of consumers in order to guarantee the balance between generation and consumption. This leads to the emergence of several incentives with the objective of increasing the flexibility from the consumer's side. This, allied to the increasing price of electricity, leads to an increasing need for consumers to adapt their consumption in order to improve energy efficiency, decrease energy bills, and achieve a better use of their own generation resources. With this, several House Management Systems (HMS), and Building Energy Management Systems (BEMS) have emerged. These systems allow adapting the consumption (or suggesting changes in consumers' habits) according to several factors. However, in order to make this management truly smart, there is a need for adaptation to different contexts, so that changes can be done accordingly to the different situations that are faced at each time. This paper addresses this problem by proposing a novel methodology that enables classifying different situations in different contexts, according to different contextual variables. © 2017 IEEE.
2018
Autores
la Prieta, Fd; Vale, ZA; Antunes, L; Pinto, T; Campbell, AT; Julián, V; Neves, AJR; Moreno, MN;
Publicação
PAAMS (Special Sessions)
Abstract
2018
Autores
Santos, G; Silva, F; Teixeira, B; Vale, Z; Pinto, T;
Publicação
20th Power Systems Computation Conference, PSCC 2018
Abstract
A key challenge in the power and energy field is the development of decision-support systems that enable studying big problems as a whole. The interoperability between systems that address specific parts of the global problem is essential. Ontologies ease the interoperability between heterogeneous systems providing semantic meaning to the information exchanged between the various parties. The use of ontologies within Smart Grids has been proposed based on the Common Information Model, which defines a common vocabulary describing the basic components used in electricity transportation and distribution. However, these ontologies are focused on utilities needs. The development of ontologies that allow the representation of diverse knowledge sources is essential, aiming at supporting the interaction between entities of different natures, facilitating the interoperability between these systems. This paper proposes a set of ontologies to enable the interoperability between different types of simulators, namely regarding electricity markets, the smart grid, and residential energy management. A case study based on real data shows the advantages of the proposed approach in enabling comprehensive power system simulation studies. © 2018 Power Systems Computation Conference.
2018
Autores
Faia, R; Pinto, T; Vale, Z; Corchado, JM;
Publicação
20th Power Systems Computation Conference, PSCC 2018
Abstract
Power and energy systems are being subject to relevant changes, mostly due to the large increase of distributed generation. These changes include the deregulation of electricity markets, which has become a more competitive marketplace due to the increase of the number of players based on renewable energy sources. This paper proposes a new portfolio optimization model for the participation in multiple alternative/complementary market opportunities, considering the risk management. The proposed model considers electricity as the asset to be negotiated. The risk is measured using the prediction error of electricity prices. A case study based on real data from Iberian electricity market-MIBEL assesses the results of the proposed model, using a particle swarm based optimization. Results show that using the proposed portfolio optimization model, market players are able to balance their market participation strategies depending on their risk aversion and profit seeking nature. © 2018 Power Systems Computation Conference.
2018
Autores
Faia, R; Pinto, T; Vale, Z; Corchado, JM;
Publicação
Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference
Abstract
Electric power systems have undergone major changes in recent years. Electricity markets are one of the sectors that has been most affected by these changes. Electricity market design is being updated in order to support efficient operation and investments incentives. However, the development of efficient rules is neither easy nor guaranteed. This paper addresses the simulation of multi-participation in electric energy markets. The purpose of this simulation is to offer solutions to electricity market players, in order to support their decisions on future participation situations. For this, artificial intelligence techniques will be used, namely for forecasting and optimization processes. In specific, an optimization approach based on Evolutionary Particle Swarm Optimization (EPSO) is proposed. The achieved results are compared to those of a deterministic resolution method, and of the classical Particle Swarm Optimization (PSO). Results show that the proposed approach is able to achieve higher mean and maximum objective function results than the classical PSO, with a smaller standard deviation. The execution time is higher than using PSO, but still very fast when compared the deterministic method. The case study is based on real data from the Iberian electricity market. © 2018 IEEE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.