Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2016

Support Vector Machines for decision support in electricity markets? strategic bidding

Autores
Pinto, T; Sousa, TM; Praça, I; Vale, Z; Morais, H;

Publicação
Neurocomputing

Abstract

2016

Support Vector Machines for decision support in electricity markets' strategic bidding

Autores
Pinto, T; Sousa, TM; Praca, I; Vale, Z; Morais, H;

Publicação
NEUROCOMPUTING

Abstract
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors' research group has developed a multi-agent system: Multi-Agent System for Competitive Electricity Markets (MASCEM), which simulates the electricity markets environment. MASCEM is integrated with Adaptive Learning Strategic Bidding System (ALBidS) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network (ANN), originating promising results: an effective electricity market price forecast in a fast execution time. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.

2016

Sustainability analysis of Tabique

Autores
Correia, M; Bentes, I; Pinto, T; Briga Sá, A; Pereira, S; Teixeira, CA;

Publicação
REHABEND

Abstract
The energy consumption in the world continues to increase and this fact contributes to rise pollution levels, environmental degradation and global greenhouse emissions. The construction sector is responsible for significant impacts on the environment as it consumes a lot of resources and also produces a lot of waste. One of the main objectives of the green construction is to reduce the environmental impacts by conserving and using resources more efficiently. This type of construction tends to apply natural raw materials. Tabique is a traditional Portuguese building technique applied until 20th century that use earth and wood as construction materials. This old buildings have high durability that requires maintenance and rehabilitation interventions. In this context, the aim of this study is to evaluate the environmental impact of tabique wall. The life cycle analysis is the tool used for the sustainability evaluation and it is carried out according to international standards ISO 14040/44. The adopted functional unit for these materials is the mass of the material required to provide a thermal resistance of 1 m2ºC/W. The calculation of the impacts is done with GaBi software and the CML 2001 impact category is used to define the Global Warming Potential of the study. The results revealed that most significant component of environmental impact of the tabique wall cocerning the category GWP is related with extraction of raw materials process and landfill.

2016

Intelligent energy management using CBR: Brazilian residential consumption scenario

Autores
Fernandes, F; Alves, D; Pinto, T; Takigawa, F; Fernandes, R; Morais, H; Vale, Z; Kagan, N;

Publicação
2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016

Abstract
This paper proposes a novel case-based reasoning (CBR) approach to support the intelligent management of energy resources in a residential context. The proposed approach analyzes previous cases of consumption reduction in houses, and determines the amount that should be reduced in each moment and in each context, in order to meet the users' needs in terms of comfort while minimizing the energy bill. The actual energy resources management is executed using the SCADA House Intelligent Management (SHIM) system, which schedules the use of the different resources, taking into account the suggested reduction amount. A case study is presented, using data from Brazilian consumers. Several scenarios are considered, representing different combinations concerning the type of house/inhabitants, the season, the type of used energy tariff, the use of Photovoltaic system (PV) generation, and the maximum amount of allowed reduction. Results show that the proposed CBR approach is able to suggest appropriate amounts of energy reduction, which result in significant reductions of the energy bill, while, with the use of SHIM, minimizing the reduction of users' comfort. © 2016 IEEE.

2016

Intelligent energy forecasting based on the correlation between solar radiation and consumption patterns

Autores
Vinagre, E; De Paz, JF; Pinto, T; Vale, Z; Corchado, JM; Garcia, O;

Publicação
2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016

Abstract
The increasing penetration of renewable generation brings a significant escalation of intermittency to the power and energy system. This variability requires a new degree of flexibility from the whole system. The active participation of small and medium players becomes essential in this context. This is only possible by using adequate forecasting techniques applied both to the consumption and to generation. However, the large number of incontrollable factors, such as the presence of consumers in the building, the luminosity, or external temperature, makes the forecasting of energy consumption an arduous task. This paper addresses the electrical energy consumption forecasting problem, by studying the correlation between the solar radiation and the electrical consumption of lights. This study is performed by means of three forecasting methods, namely a multi-layer perceptron artificial neural network, a support vector regression method, and a linear regression method. The performed studies are analyzed using data gathered from a real installation - campus of the Polytechnic of Porto, in real time. © 2016 IEEE.

2016

Energy consumption forecasting based on Hybrid Neural Fuzzy Inference System

Autores
Jozi, A; Pinto, T; Praca, I; Silva, F; Teixeira, B; Vale, Z;

Publicação
2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016

Abstract
Forecasting the electricity consumption is one of the most challenging tasks for energy domain stakeholders. Having reliable electricity consumption forecasts can help minimizing the cost of electricity and also enable a better control on the electricity tariff. This paper presents a study regarding the forecast of electricity consumption using a methodology based on Hybrid neural Fuzzy Inference System (HyFIS). The proposed approach considers two distinct strategies, namely one strategy using only the electricity consumption as the input of the method, and the second strategy uses a combination of the electricity consumption and the environmental temperature as the input. A case study considering the forecasting of the consumption of an office building using the proposed methodologies is also presented. Results show that the second strategy is able to achieve better results, hence concluding that HyFIS is an appropriate approach to incorporate different sources of information. In this way, the environmental temperature can help the HyFIS method to achieve a more reliable forecast of the electricity consumption. © 2016 IEEE.

  • 341
  • 589