2025
Autores
Van Zeller, M; Cesario, V;
Publicação
COMPANION PROCEEDINGS OF THE 2025 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE, DIS 2025
Abstract
The Haka'a'Museum workshop in Madeira explores how augmented reality (AR) enhances marine conservation education. This one-day, hands-on experience engages participants in co-creating AR experiences that make complex environmental issues more accessible. Following a structured approach, participants explore museum exhibits, collaborate on AR concepts, implement content using no-code tools, and evaluate their experiences. Leveraging Madeira's unique marine ecosystem, the workshop addresses ocean pollution, climate change, and sustainability. Data from AR interactions will inform the best practices for museum education. Ultimately, the workshop fosters awareness and action for ocean sustainability, redefining how museums educate through immersive technology.
2025
Autores
Fonseca, T; Ferreira, LL; Cabral, B; Severino, R; Nweye, K; Ghose, D; Nagy, Z;
Publicação
Energy Inform.
Abstract
2025
Autores
Fonseca, T; Sousa, C; Venâncio, R; Pires, P; Severino, R; Rodrigues, P; Paiva, P; Ferreira, LL;
Publicação
CoRR
Abstract
2025
Autores
Gonçalves, J; Silva, M; Cabral, B; Dias, T; Maia, E; Praça, I; Severino, R; Ferreira, LL;
Publicação
CoRR
Abstract
2025
Autores
Gonçalves, J; Silva, M; Cabral, B; Dias, T; Maia, E; Praça, I; Severino, R; Ferreira, LL;
Publicação
CYBERSECURITY, EICC 2025
Abstract
Deep Learning (DL) has emerged as a powerful tool for vulnerability detection, often outperforming traditional solutions. However, developing effective DL models requires large amounts of real-world data, which can be difficult to obtain in sufficient quantities. To address this challenge, DiverseVul dataset has been curated as one of the largest datasets of vulnerable and non-vulnerable C/C++ functions extracted exclusively from real-world projects. Its goal is to provide high-quality, large-scale samples for training DL models. Nevertheless, during our study several inconsistencies were identified in the raw dataset while applying pre-processing techniques, highlighting the need for a refined version. In this work, we present a refined version of DiverseVul dataset, which is used to fine-tune a large language model, LLaMA 3.2, for vulnerability detection. Experimental results show that the use of pre-processing techniques led to an improvement in performance, with the model achieving an F1-Score of 66%, a competitive result when compared to our baseline, which achieved a 47% F1-Score in software vulnerability detection.
2025
Autores
Carvalho, T; Müller, T; Reiter, S; Pinho, LM; Oliveira, A;
Publicação
International Conference on Model-Driven Engineering and Software Development
Abstract
The Internet of Things (IoT) enables everyday objects to connect and communicate remotely, transforming areas such as smart homes and industrial automation. IoT systems can be standalone or interconnected in a System of Systems, where multiple devices work together towards a common goal. A key application is Energy Monitoring Systems (EMS), which track energy use within communities, using energy production and consumption. Designing this type of IoT systems remains complex and requires careful consideration of heterogeneous devices, their limitations, software, communication protocols, data management, and security. This paper presents a design approach for EMS communities, with a focus on house-level IoT systems. We introduce a model-driven development methodology, a holistic and flexible framework for designing IoT systems across the development and operations lifecycle. Especially, the concept of projectors enables an easy shift between domain assets and provide automation support. The approach is validated with a real-life use case, for which an analysis phase was developed, showing the benefits of using our approach for managing EMS and the automation of the analysis configuration. © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.