Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2024

IS-PEW: Identifying Influential Spreaders Using Potential Edge Weight in Complex Networks

Autores
Nandi, S; Malta, MC; Maji, G; Dutta, A;

Publicação
COMPLEX NETWORKS & THEIR APPLICATIONS XII, VOL 3, COMPLEX NETWORKS 2023

Abstract
Identifying the influential spreaders in complex networks has emerged as an important research challenge to control the spread of (mis)information or infectious diseases. Researchers have proposed many centrality measures to identify the influential nodes (spreaders) in the past few years. Still, most of them have not considered the importance of the edges in unweighted networks. To address this issue, we propose a novel centrality measure to identify the spreading ability of the Influential Spreaders using the Potential Edge Weight method (IS-PEW). Considering the connectivity structure, the ability of information exchange, and the importance of neighbouring nodes, we measure the potential edge weight. The ranking similarity of spreaders identified by IS-PEW and the baseline centrality methods are compared with the Susceptible-Infectious-Recovered (SIR) epidemic simulator using Kendall's rank correlation. The spreading ability of the top-ranking spreaders is also compared for five different percentages of top-ranking node sets using six different real networks.

2024

Promoting Interoperability on the Datasets of the Arrowheads Findings of the Chalcolithic and the Early/Middle Bronze Age

Autores
Curado-Malta, M; Diez-Platas, ML; Araujo, A; Muralha, J; Oliveira, M;

Publicação
LINKING THEORY AND PRACTICE OF DIGITAL LIBRARIES, PT I, TPDL 2024

Abstract
Archaeological discoveries can benefit enormously from linked open data (LOD) technologies since, as new objects are discovered, data about them can be placed in the LOD cloud and instantly accessible to third parties. This article presents a framework developed to publish LOD on arrowheads from the Chalcolithic and Early/Middle Bronze Age chronologies (2800/2900 BC to 1500 BC) found in the last 25 years of excavations on an archaeological site in Portugal. These arrowheads were kept in boxes, hidden from the possibility of being studied and viewed by interested parties. The framework encompasses a metadata application profile (MAP) and tools to be used with this MAP, such as a namespace, two metadata schemas and eight vocabulary coding schemes. The MAP domain model was developed with the support of the scientific literature about this type of arrowheads, and the team integrated two archaeologists. This framework was created with the design philosophy of maximising data interoperability, so terms from the CIDOC CRM conceptual models and other vocabularies widely used in the LOD cloud were used. The MAP was tested using a set of seven arrowheads, which proved, in the first instance, the viability of the developed MAP. The team plans to test the model in future work with arrowheads of other excavations.

2024

Normalized strength-degree centrality: identifying influential spreaders for weighted network

Autores
Sadhu, S; Namtirtha, A; Malta, MC; Dutta, A;

Publicação
SOCIAL NETWORK ANALYSIS AND MINING

Abstract
Influential spreaders are key nodes in networks that maximize or control the spreading processes. Many real-world systems are represented as weighted networks, and several indexing methods, such as weighted betweenness, closeness, k-shell decomposition, voterank, and mixed degree decomposition, among others, have been proposed to identify these influential nodes. However, these methods often face limitations such as high computational cost, non-monotonic rankings, and reliance on tunable parameters. To address these issues, this paper introduces a new tunable parameter-free method, Normalized Strength-Degree Centrality (nsd), which efficiently combines a node's normalized degree and strength to measure its influence across various network structures. Experimental results on eleven real and synthetic weighted networks show that nsd outperforms the existing methods in accurately identifying influential spreaders, strongly correlating to the Weighted Susceptible-Infected-Recovered (WSIR) model. Additionally, nsd is a parameter-free method that does not require time-consuming preprocessing to estimate rankings.

2023

Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2023, Volume 1: GRAPP, Lisbon, Portugal, February 19-21, 2023

Autores
de Sousa, AA; Rogers, TB; Bouatouch, K;

Publicação
VISIGRAPP (1: GRAPP)

Abstract

2023

Computer Vision, Imaging and Computer Graphics Theory and Applications - 16th International Joint Conference, VISIGRAPP 2021, Virtual Event, February 8-10, 2021, Revised Selected Papers

Autores
de Sousa, AA; Havran, V; Paljic, A; Peck, TC; Hurter, C; Purchase, HC; Farinella, GM; Radeva, P; Bouatouch, K;

Publicação
VISIGRAPP (Revised Selected Papers)

Abstract

2023

Computer Vision, Imaging and Computer Graphics Theory and Applications - 17th International Joint Conference, VISIGRAPP 2022, Virtual Event, February 6-8, 2022, Revised Selected Papers

Autores
de Sousa, AA; Debattista, K; Paljic, A; Ziat, M; Hurter, C; Purchase, HC; Farinella, GM; Radeva, P; Bouatouch, K;

Publicação
VISIGRAPP (Revised Selected Papers)

Abstract

  • 44
  • 641