Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2024

Usability Analysis of a Virtual Reality Exposure Therapy Serious Game for Blood Phobia Treatment: Phobos

Autores
Petersen, J; Carvalho, V; Oliveira, JT; Oliveira, E;

Publicação
ELECTRONICS

Abstract
Phobias are characterized as the excessive or irrational fear of an object or situation, and specific phobias affect about 10% of the world population. Blood-injection-injury phobia is a specific phobia that has a unique physical response to phobic stimuli, that is, a vasovagal syncope that causes the person to faint. Phobos is a serious game intended for blood phobia treatment that was created to be played in virtual reality with an HTC Vive that has photorealistic graphics to provide a greater immersion. We also developed a console application in C# for electrocardiography sensor connectivity and data acquisition, which gathers a 1 min baseline reading and then has continuous data acquisition during gameplay. Usability tests were conducted with self-reported questionnaires and with a case study population of 10 testers, which gave insight into the previous game experience of the tester for both digital games and virtual reality games, evaluating the discomfort for hardware on both the sensor and the virtual reality headset, as well as the game regarding usability, user experience, level of immersion, and the existence of motion sickness and its source. The results corroborate that the immersion of the game is good, which suggests that it will help with triggering the phobia.

2024

Evaluating Constrained Users Ability to Interact with Virtual Reality Applications

Autores
Ribeiro, T; Henriques, PR; Oliveira, E; Rodrigues, NE;

Publicação
2024 IEEE 12TH INTERNATIONAL CONFERENCE ON SERIOUS GAMES AND APPLICATIONS FOR HEALTH, SEGAH 2024

Abstract
This article introduces an immersive Virtual Reality (VR) application designed to assess the interaction capabilities of users with physical and cognitive limitations, including older adults and individuals with disabilities, as well as ICU patients. The VR application encompasses six tasks varying in complexity, each designed to evaluate different aspects of VR interaction skills, such as movements of the head, arms, and fingers, alongside more intricate activities like pick-and-place, pointing, and painting.The paper details the VR application's specifications, including its system architecture, deployment framework, and data structure. The application's efficacy was tested through three pilot studies in a retirement home setting. The analysis focused on examining correlations among various factors, including age, cognitive abilities (evaluated using the Mini-Mental Status Examination), and previous VR experience. The findings reveal significant correlations, illuminating the effects of age, cognitive capacity, and past VR interactions on task performance. The results emphasize the importance of accounting for user-specific attributes, prior experiences, and cognitive abilities in the design of VR-based therapeutic interventions.

2024

Multiprotocol Middleware Translator for IoT

Autores
Cabral, B; Venancio, R; Costa, P; Fonseca, T; Ferreira, LL; Severino, R; Barros, A;

Publicação
2024 27TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN, DSD 2024

Abstract
The increasing number of IoT deployment scenarios and applications fostered the development of a multitude of specially crafted communication solutions, several proprietary, which are erecting barriers to IoT interoperability, impairing their pervasiveness. To address such problems, several middleware solutions exist to standardize IoT communications, hence promoting and facilitating interoperability. Although being increasingly adopted in most IoT systems, it became clear that there was no one size fits all solution that could address the multiple Quality-of-Service heterogeneous IoT systems may impose. Consequently, we witness new interoperability challenges regarding the usage of diverse middleware. In this work, we address this issue by proposing a novel architecture - the PolyglIoT, that can effectively interconnect diverse middleware solutions while considering the delivery QoS requirements alongside the proposed translation. We analyze the performance and robustness of the solution and show that such Multiprotocol Translator is feasible and can achieve a high performance, thus becoming a fundamental piece to enable future highly heterogeneous IoT systems of systems.

2024

The OPEVA Manifest: OPtimisation of Electrical Vehicle Autonomy, a Research and Innovation project

Autores
Kanak, A; Ergün, S; Arif, I; Ergün, SH; Bektas, C; Atalay, AS; Herkiloglu, O; Defossez, D; Yazici, A; Ferreira, LL; Strelec, M; Kubicek, K; Cech, M; Davoli, L; Belli, L; Ferrari, G; Bayar, D; Kafali, A; Karamavus, Y; Sofu, AM; Hartavi Karci, AE; Constant, P;

Publicação
Open Research Europe

Abstract
Electromobility is a critical component of Europe’s strategy to create a more sustainable society and support the European Green Transition while enhancing quality of life. Electrification also plays an important role in securing Europe’s position in the growing market of electric and autonomous vehicles (EAV). The EU-funded OPEVA project aims to take a big step towards deployment of sustainable electric vehicles by means of optimising their support in an ecosystem. Specifically, the project focuses on analysing and designing optimisation architecture, reducing battery charging time, and developing infrastructure, as well as reporting on the driver-oriented human factors. Overall, OPEVA’s goal is to enhance EAV market penetration and adoption, making them more accessible and convenient. The aim of this paper is to inform the European automotive, transportation, energy and mobility community be presenting the OPEVA manifestation, and the overall solution strategy solidified through the progress throughout the first year of the project.

2024

Time-predictable task-to-thread mapping in multi-core processors

Autores
Samadi, M; Royuela, S; Pinho, LM; Carvalho, T; Quinones, E;

Publicação
JOURNAL OF SYSTEMS ARCHITECTURE

Abstract
The performance of time-predictable systems can be improved in multi-core processors using parallel programming models (e.g., OpenMP). However, schedulability analysis of parallel applications is a big challenge due to their sophisticated structure. The common drawbacks of current task-to-thread mapping approaches in OpenMP are that they (i) utilize a global queue in the mapping process, which may increase contention, (ii) do not apply heuristic techniques, which may reduce the predictability and performance of the system, and (iii) use basic analytical techniques, which may cause notable pessimism in the temporal conditions. Accordingly, this paper proposes a task-to-thread mapping method in multi-core processors based on the OpenMP framework. The mapping process is carried out through two phases: allocation and dispatching. Each thread has an allocation queue in order to minimize contention, and the allocation and dispatching processes are performed using several heuristic algorithms to enhance predictability. In the allocation phase, each task-part from the OpenMP DAG is allocated to one of the allocation queues, which includes both sibling and child task-parts. A suitable thread (i.e., allocation queue) is selected using one of the suggested heuristic allocation algorithms. In the dispatching phase, when a thread is idle, a task-part is selected from its allocation queue using one of the suggested heuristic dispatching algorithms and then dispatched to and executed by the thread. The performance of the proposed method is evaluated under different conditions (e.g., varying the number of tasks and the number of threads) in terms of application response time and overhead of the mapping process. The simulation results show that the proposed method surpasses the other methods, especially in the scenario that includes overhead of the mapping. In addition, a prototype implementation of the main heuristics is evaluated using two kernels from real-world applications, showing that the methods work better than LLVM's default scheduler in most of the configurations.

2024

Real-Time Parallel Programming for Homogeneous Multicores

Autores
Pinho, LM;

Publicação
2024 IEEE 14TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL EMBEDDED SYSTEMS, SIES

Abstract
Developing real-time systems applications requires programming paradigms that can handle the specification of concurrent activities and timing constraints, and controlling execution on a particular platform. The increasing need for high-performance, and the use of fine-grained parallel execution, makes this an even more challenging task. This paper explores the state-of-the-art and challenges in real-time parallel application development, focusing on two research directions: one from the high- performance domain (using OpenMP) and another from the real-time and critical systems field (based on Ada). The paper reviews the features of each approach and highlights remaining open issues.

  • 51
  • 658