Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2024

Solar Intensity Classification with Imbalanced Data

Autores
Teixeira, I; Baptista, J; Pinto, T;

Publicação
Lecture Notes in Networks and Systems

Abstract
In recent years, there has been a significant growth in the use of technologies that rely on natural resources (wind, solar, etc.) as primary sources of energy. The generation originating from renewable sources brings an increased need for adaptation in power electrical systems. Predicting the amount of energy produced by these technologies is a complex task due to the uncertainty associated with natural resources. This uncertainty hinders decision-making, both at the system level and for consumers themselves who are increasingly using this type of technology for self-consumption. This study focuses on classifying solar intensity using imbalanced data, which means that some of the data categories are more prevalent than others. Oversampling techniques are be employed to increase the amount of data, thereby allowing for balanced training data and improving the performance of prediction models. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

2024

Synthetic Data Generation Models for Time Series: A Literature Review

Autores
Viana, D; Teixeira, R; Baptista, J; Pinto, T;

Publicação
International Conference on Electrical, Computer and Energy Technologies, ICECET 2024, Sydney, Australia, July 25-27, 2024

Abstract
This article presents a comprehensive state of the art analysis of the challenging domain of synthetic data generation. Focusing on the problem of synthetic data generation, the paper explores various difficulties that are identified, especially in real-world problems such as those is the scope of power and, energy systems, including the amount of data, data privacy concerns, temporal considerations, dynamic generation, delays, and failures. The investigation delves into the multifaceted nature of the challenges presented by these factors in the synthesis process. The review thoroughly examines different models used in synthetic data generation, covering Generative Adversarial Networks (GANs), Variational Autoencoder (VAE), Synthetic Minority Oversampling Technique (SMOTE), Data Synthesizer (DS) and E. Non-Parametric SynthPop (SP-NP). Each model is dissected with respect to its advantages, disadvantages, and applicability in different data generation scenarios. Special attention is paid to the nuanced aspects of dynamic data generation and the mitigation of challenges such as delays and failures. The insights drawn from this review contribute to a deeper understanding of the landscape around synthetic data generation, providing a valuable resource for researchers, practitioners, and stakeholders who aim to harness the potential of synthetic data in addressing real-world data challenges. The paper concludes by outlining possible avenues for future research and development in this ever-evolving field. © 2024 IEEE.

2024

Generative Adversarial Networks for Synthetic Meteorological Data Generation

Autores
Viana, D; Teixeira, R; Soares, T; Baptista, J; Pinto, T;

Publicação
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part II

Abstract
This study explores models for synthetic data generation of time series. In order to improve the achieved results, i.e., the data generated, new ways of improvement are explored and different models of synthetic data generation are compared. The model addressed in this work is the Generative Adversarial Networks (GANs), known for generating data similar to the original basis data through the training of a generator. The GANs are applied using the datasets of Quinta de Santa Bárbara and the Pinhão region, with the main variables being the Average temperature, Wind direction, Average wind speed, Maximum instantaneous wind speed and Solar radiation. The model allowed to generate missing data in a given period and, in turn, enables to analyze the results and compare them with those of a multiple linear regression method, being able to evaluate the effectiveness of the generated data. In this way, through the study and analysis of the GANs we can see if the model presents effectiveness and accuracy in the synthetic generation of meteorological data. With the proper conclusions of the results, this information can be used in order to improve the search for different models and the ability to generate synthetic time series data, which is representative of the real, original, data. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Enhanced User Interaction in Mobility Decision Support Using Explainable Artificial Intelligence

Autores
Valina, L; Teixeira, B; Pinto, T; Vale, Z; Coelho, S; Fontes, S; Reis, A;

Publicação
HCI International 2024 - Late Breaking Papers - 26th International Conference on Human-Computer Interaction, HCII 2024, Washington, DC, USA, June 29 - July 4, 2024, Proceedings, Part II

Abstract
Artificial Intelligence (AI) is now ubiquitous in daily life, significantly impacting society by supporting decision-making. However, in many application areas, understanding the rationale behind AI decisions is crucial, highlighting the need for explainable AI (XAI). AI algorithms often lack transparency, making it hard to understand their inner workings. This work presents an overview of XAI solutions for decision support in mobility context. It addresses the complexity of explaining decision support models by offering explanations in various formats tailored to different user profiles. By integrating language models, XAI models may generate texts with varying technical detail levels, aiding ethical AI deployment and bridging the gap between complex models and human interpretability. This work explores the need for flexible explanation formats, supporting varied user profiles with graphical, textual, and tabular explanations. By integrating natural language processing models personalized explanations that are accurate, understandable, and accessible to a diverse audience can be generated. This study ultimately aims to support the task of making XAI robust and user-friendly, boosting its widespread use and application. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Spatiotemporal Estimation of the Potential Adoption of Photovoltaic Systems on Urban Residential Roofs

Autores
Mejia, MA; Macedo, LH; Pinto, T; Franco, JF;

Publicação
ELECTRONICS

Abstract
The adoption of residential photovoltaic (PV) systems to mitigate the effects of climate change has been incentivized in recent years by government policies. Due to the impacts of these systems on the energy mix and the electrical grid, it is essential to understand how these technologies will expand in urban areas. To fulfill that need, this article presents an innovative method for modeling the diffusion of residential PV systems in urban environments that employs spatial analysis and urban characteristics to identify residences at the subarea level with the potential for installing PV systems, along with temporal analysis to project the adoption growth of these systems over time. This approach integrates urban characteristics such as population density, socioeconomic data, public environmental awareness, rooftop space availability, and population interest in new technologies. Results for the diffusion of PV systems in a Brazilian city are compared with real adoption data. The results are presented in thematic maps showing the spatiotemporal distribution of potential adopters of PV systems. This information is essential for creating efficient decarbonization plans because, while many households can afford these systems, interest in new technologies and knowledge of the benefits of clean energy are also necessary for their adoption.

2024

Dynamic Online Parameter Configuration of Genetic Algorithms Using Reinforcement Learning

Autores
Oliveira, V; Pinto, T; Ramos, C;

Publicação
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part II

Abstract
The effectiveness of optimizing complex problems is closely linked to the configuration of parameters in search algorithms, especially when considering metaheuristic optimization models. Although various automated methods for algorithm configuration have been proposed to alleviate users from manually tuning parameters, there is still unexplored potential in dynamically adjusting certain algorithm parameters during execution, which can lead to enhanced performance. The main objective is to comparatively analyze the effectiveness of manual parameter tuning compared to a dynamic online configuration approach based on reinforcement learning. To this end, the State-Action-Reward-State-Action (SARSA) algorithm is adapted to adjust the parameters of a genetic algorithm, namely population size, crossover rate, mutation rate, and number of generations. Tests are conducted with these two methods on benchmark functions commonly used in the literature. Additionally, the proposed model has been evaluated in a practical problem of optimizing energy trading portfolios in the electricity market. Results indicate that the reinforcement learning-based algorithm tends to achieve seemingly better results than manual configuration, while maintaining very similar execution times. This result suggests that online parameter tuning approaches may be more effective and offer a viable alternative for optimization in metaheuristic algorithms. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

  • 55
  • 663