Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2023

A Review on Artificial Intelligence Applications for Multiple Sclerosis Evaluation and Diagnosis

Autores
Cunha, B; Madureira, A; Gonçalves, L;

Publicação
Lecture Notes in Networks and Systems

Abstract
Multiple Sclerosis is one of the most common diseases of the central nervous system that affects millions of people worldwide. The prediction of this disease is considered a challenge since the symptoms are highly variable as the disease worsens and, as such, it has emerged as a topic that artificial intelligence scientists have tried to challenge. With the goal of providing a brief review that may serve as a starting point for future researchers on such a deep field, this paper puts forward a summary of artificial intelligence applications for Multiple Sclerosis evaluation and diagnosis. It includes a detailed recap of what Multiple Sclerosis is, the connections between artificial intelligence and the human brain, and a description of the main proposals in this field. It also concludes what the most reliable methods are at the present time, discussing approaches that achieve accuracy values up to 98.8%. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Analysing and Modeling Customer Success in Digital Marketing

Autores
César, I; Pereira, I; Madureira, A; Coelho, D; Rebelo Â, M; de Oliveira, DA;

Publicação
Lecture Notes in Networks and Systems

Abstract
Digital Marketing sets a sequence of strategies responsible for maximizing the interaction between companies and their target audience. One of them, known as Customer Success, establishes long-term techniques capable of projecting the sustainable value of a given customer to a company, monitoring the indexers that translate its activities. Therefore, this paper intends to address the need to develop an innovative tool that allows the creation of a temporal knowledge base composed of the behavioral evolution of customers. The CRISP-DM model benefits the processing and modeling of data capable of generating knowledge through the application and combination of the results obtained by machine learning algorithms specialized in time series. Time Series K-Means allows the clustering and differentiation of consumers characterized by their similar habits. Through the formulation of profiles, it is possible to apply forecasting methods that predict the following trends. The proposed solution provides the understanding of time series that profile the flow of customer activity and the use of the evidenced dynamics for the future prediction of these behaviors. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

A Review on Dimensionality Reduction for Machine Learning

Autores
Coelho, D; Madureira, A; Pereira, I; Gonçalves, R;

Publicação
Lecture Notes in Networks and Systems

Abstract
In recent years growing volumes of data have made the task of applying various machine learning algorithms a challenge in a great number of cases. This challenge is posed in two main ways: training time and processing load. Normally, problems in these two categories may be attributed to irrelevant, redundant, or noisy features. So as to avoid this type of feature most pre-processing pipelines include a step dedicated so selecting the most relevant features or combining existing ones into a single better representation. These techniques are denominated dimensionality reduction techniques. In this work, we aim to present a short look at the current state of the art in this area. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Preface

Autores
Abraham, A; Madureira, AM; Kahraman, C; Castillo, O; Bettencourt, N; Cebi, S; Forestiero, A;

Publicação
Lecture Notes in Networks and Systems

Abstract
[No abstract available]

2023

Windy Energy Production Planning Considering Local Marginal Prices

Autores
Guarezzi, P; Ferreira, M; Sica, T; Puga, J; Madureira, A;

Publicação
International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023

Abstract
This paper presents several case studies that show that it is possible to use clean energy to produce electricity, we have environmental benefits and benefits for the management of the electrical transmission network. In this case wind energy are used.For this work, software was developed in Matlab for the model we developed and the results of this were compared with the results obtained by the simulator Power World.To make the decision to replace generators fossil generators with wind generators, Local Marginal Prices (LMP) were used. Some case studies were created using a model system, with the objective of evaluating the benefits of this allocation based on the LMP.The test network presented in this paper is a 9 Bus network. However, the developed software was also tested on an IEEE 30 Bus network. © 2023 IEEE.

2023

Study of Forecasting Methods’ Impact in Wholesale Electricity Market Participation

Autores
Teixeira, B; Faia, R; Pinto, T; Vale, Z;

Publicação
Lecture Notes in Networks and Systems

Abstract
Renewable energy sources have transformed the electricity market, allowing virtual power players or aggregators to participate and benefit from selling surplus energy. However, meeting demand and ensuring energy production stability can be challenging due to the intermittent nature of renewable sources. Accurate forecasting of energy consumption, generation, and electricity prices is critical to address these issues. Moreover, the selection of the best algorithm for forecasting is usually based on the predictions’ accuracy, neglecting other factors such as the impact of errors on the real context. This paper presents a study on the economic risk of price forecasting errors on the electricity market’s trading. For this, a simulation model is proposed to analyze the deviations between actual and predicted prices and how these deviations can affect trading in the electricity market, where the main purpose is to maximize profit, depending on whether the player is buying or selling electricity. The economic risk analysis and the predictions scores are used to improve the forecasts, using an approach based on reinforcement learning to evaluating and selecting which models demonstrated better performance in past transactions. The study involved simulating an aggregator’s transactions in the Iberian electricity market for two consecutive days in October 2021. Real data from the market operator between 2020 and 2021 and seven forecasting models were used. The findings showed that errors have a significant impact on profit. Including the economic impact analysis and score evaluation of forecasting methods to determine which method can offer better results has proven to be a viable approach. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • 59
  • 598