2024
Autores
Viana, D; Teixeira, R; Baptista, J; Pinto, T;
Publicação
International Conference on Electrical, Computer and Energy Technologies, ICECET 2024, Sydney, Australia, July 25-27, 2024
Abstract
This article presents a comprehensive state of the art analysis of the challenging domain of synthetic data generation. Focusing on the problem of synthetic data generation, the paper explores various difficulties that are identified, especially in real-world problems such as those is the scope of power and, energy systems, including the amount of data, data privacy concerns, temporal considerations, dynamic generation, delays, and failures. The investigation delves into the multifaceted nature of the challenges presented by these factors in the synthesis process. The review thoroughly examines different models used in synthetic data generation, covering Generative Adversarial Networks (GANs), Variational Autoencoder (VAE), Synthetic Minority Oversampling Technique (SMOTE), Data Synthesizer (DS) and E. Non-Parametric SynthPop (SP-NP). Each model is dissected with respect to its advantages, disadvantages, and applicability in different data generation scenarios. Special attention is paid to the nuanced aspects of dynamic data generation and the mitigation of challenges such as delays and failures. The insights drawn from this review contribute to a deeper understanding of the landscape around synthetic data generation, providing a valuable resource for researchers, practitioners, and stakeholders who aim to harness the potential of synthetic data in addressing real-world data challenges. The paper concludes by outlining possible avenues for future research and development in this ever-evolving field. © 2024 IEEE.
2024
Autores
Mejia, MA; Macedo, LH; Pinto, T; Franco, JF;
Publicação
ELECTRONICS
Abstract
The adoption of residential photovoltaic (PV) systems to mitigate the effects of climate change has been incentivized in recent years by government policies. Due to the impacts of these systems on the energy mix and the electrical grid, it is essential to understand how these technologies will expand in urban areas. To fulfill that need, this article presents an innovative method for modeling the diffusion of residential PV systems in urban environments that employs spatial analysis and urban characteristics to identify residences at the subarea level with the potential for installing PV systems, along with temporal analysis to project the adoption growth of these systems over time. This approach integrates urban characteristics such as population density, socioeconomic data, public environmental awareness, rooftop space availability, and population interest in new technologies. Results for the diffusion of PV systems in a Brazilian city are compared with real adoption data. The results are presented in thematic maps showing the spatiotemporal distribution of potential adopters of PV systems. This information is essential for creating efficient decarbonization plans because, while many households can afford these systems, interest in new technologies and knowledge of the benefits of clean energy are also necessary for their adoption.
2024
Autores
Carneiro, L; Pinto, T; Baptista, J;
Publicação
2024 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM 2024
Abstract
Currently, energy consumption in residential buildings is increasingly high. To meet demand, renewable energies are increasingly being used to produce more energy in a sustainable way, which has led to an increase in the load on the distribution network. Thus, with the exponential growth of dependence on technologies, studies on consumption patterns are increasingly common in order to try to understand the needs of the population and, in this way, make a more rational and efficient use of energy. This article aims to find consumption patterns in residential devices, considering specific houses. This work proposes the use of the Apriori algorithm, which allows the creation of several association rules among devices. The results, considering several scenarios in a house with 9 appliances, show that, despite the Apriori algorithm's difficulty in finding associations in household appliances with little time of use, several interesting association rules can be identified, providing relevant insights for future consumption flexibility models applications.
2024
Autores
Yamamoto, RY; Pinto, T; Romero, R; Macedo, LH;
Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
This work presents a specialized tabu search algorithm applied to the problem of electric power distribution systems primary feeders' reconfiguration. The specialization is related to two fundamental aspects of the tabu search algorithm. The first proposal eliminates the concept of a list of prohibited attributes and the aspiration criterion, but also avoids the possibility of revisiting a candidate solution so that cycling is avoided by maintaining a tabu list with all previously visited solutions. The second proposal is the possibility of restarting the search from the incumbent solution while avoiding paths that can be formed by revisiting candidate solutions. A new strategy based on Prim's algorithm generates a high-quality initial solution for the problem. Tests are conducted using the 33-, 84-, 118-, 136-, and 415-node test systems. The results demonstrate the effectiveness of the proposal for solving the reconfiguration problem since the best-known solution for each system is achieved within highly efficient execution times.
2024
Autores
Valina, L; Teixeira, B; Reis, A; Vale, Z; Pinto, T;
Publicação
2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024
Abstract
Artificial intelligence encapsulates a black box of undiscovered knowledge, propelling the exploration of Explainable Artificial Intelligence (XAI) in generative data synthesis and deep learning. Focused on unveiling these black box areas, pointed into interpretability and validation in synthetic data generation, shedding light on the intricacies of generative processes. XAI techniques illuminate decision-making in complex algorithms, enhancing transparency and fostering a comprehensive understanding of non-linear relationships. Addressing the complexity of explaining deep learning models, this paper proposes an XAI solution for deep synthetic data generation explanation. The model integrates a clustering approach to identify similar training instances, reducing interpretation time for large datasets. Explanations, available in various formats, are tailored to diverse user profiles through integration with language models, generating texts with different technical detail levels. This research contributes to ethically deploying AI, bridging the gap between advanced model complexities and human interpretability in the dynamic landscape of artificial intelligence.
2024
Autores
Yumbla, J; Home Ortiz, J; Pinto, T; Catalao, JPS; Mantovani, JRS;
Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
This study proposes a strategy for short-term operational planning of active distribution systems to minimize operating costs and greenhouse gas (GHG) emissions. The strategy incorporates network reconfiguration, switchable capacitor bank operation, dispatch of fossil fuel-based and renewable distributed energy resources, energy storage devices, and a demand response program. Uncertain operational conditions, such as energy costs, power demand, and solar irradiation, are addressed using stochastic scenarios derived from historical data through a k-means technique. The mathematical formulation adopts a stochastic scenario-based mixed-integer second-order conic programming (MISOCP) model. To handle the computational complexity of the model, a neighborhood-based matheuristic approach (NMA) is introduced, employing reduced MISOCP models and a memory strategy to guide the optimization process. Results from 69 and 118-node distribution systems demonstrate reduced operational costs and GHG emissions. Moreover, the proposed NMA outperforms two commercial solvers. This work provides insights into optimizing the operation of distribution systems, yielding economic and environmental benefits.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.