Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2022

SCARA Self Posture Recognition Using a Monocular Camera

Autores
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Filipe, V;

Publicação
IEEE ACCESS

Abstract
Robotic manipulators rely on feedback obtained from rotary encoders for control purposes. This article introduces a vision-based feedback system that can be used in an agricultural context, where the shapes and sizes of fruits are uncertain. We aim to mimic a human, using vision and touch as manipulator control feedback. This work explores the use of a fish-eye lens camera to track a SCARA manipulator with coloured markers on its joints for the position estimation with the goal to reduce costs and increase reliability. The Kalman Filter and the Particle Filter are compared and evaluated in terms of accuracy and tracking abilities of the marker's positions. The estimated image coordinates of the markers are converted to world coordinates using planar homography, as the SCARA manipulator has co-planar joints and the coloured markers share the same plane. Three laboratory experiments were conducted to evaluate the system's performance in joint angle estimation of a manipulator. The obtained results are promising, for future cost effective agricultural robotic arms developments. Besides, this work presents solutions and future directions to increase the joint position estimation accuracy.

2022

Obstacle Detection for Autonomous Guided Vehicles through Point Cloud Clustering Using Depth Data

Autores
Pires, M; Couto, P; Santos, A; Filipe, V;

Publicação
MACHINES

Abstract
Autonomous driving is one of the fastest developing fields of robotics. With the ever-growing interest in autonomous driving, the ability to provide robots with both efficient and safe navigation capabilities is of paramount significance. With the continuous development of automation technology, higher levels of autonomous driving can be achieved with vision-based methodologies. Moreover, materials handling in industrial assembly lines can be performed efficiently using automated guided vehicles (AGVs). However, the visual perception of industrial environments is complex due to the existence of many obstacles in pre-defined routes. With the INDTECH 4.0 project, we aim to develop an autonomous navigation system, allowing the AGV to detect and avoid obstacles based in the processing of depth data acquired with a frontal depth camera mounted on the AGV. Applying the RANSAC (random sample consensus) and Euclidean clustering algorithms to the 3D point clouds captured by the camera, we can isolate obstacles from the ground plane and separate them into clusters. The clusters give information about the location of obstacles with respect to the AGV position. In experiments conducted outdoors and indoors, the results revealed that the method is very effective, returning high percentages of detection for most tests.

2022

Hybrid Quality Inspection for the Automotive Industry: Replacing the Paper-Based Conformity List through Semi-Supervised Object Detection and Simulated Data

Autores
Rio-Torto, I; Campanico, AT; Pinho, P; Filipe, V; Teixeira, LF;

Publicação
APPLIED SCIENCES-BASEL

Abstract
The still prevalent use of paper conformity lists in the automotive industry has a serious negative impact on the performance of quality control inspectors. We propose instead a hybrid quality inspection system, where we combine automated detection with human feedback, to increase worker performance by reducing mental and physical fatigue, and the adaptability and responsiveness of the assembly line to change. The system integrates the hierarchical automatic detection of the non-conforming vehicle parts and information visualization on a wearable device to present the results to the factory worker and obtain human confirmation. Besides designing a novel 3D vehicle generator to create a digital representation of the non conformity list and to collect automatically annotated training data, we apply and aggregate in a novel way state-of-the-art domain adaptation and pseudo labeling methods to our real application scenario, in order to bridge the gap between the labeled data generated by the vehicle generator and the real unlabeled data collected on the factory floor. This methodology allows us to obtain, without any manual annotation of the real dataset, an example-based F1 score of 0.565 in an unconstrained scenario and 0.601 in a fixed camera setup (improvements of 11 and 14.6 percentage points, respectively, over a baseline trained with purely simulated data). Feedback obtained from factory workers highlighted the usefulness of the proposed solution, and showed that a truly hybrid assembly line, where machine and human work in symbiosis, increases both efficiency and accuracy in automotive quality control.

2022

Semantic Segmentation of Dog's Femur and Acetabulum Bones with Deep Transfer Learning in X-Ray Images

Autores
da Silva, DEM; Filipe, V; Franco-Goncalo, P; Colaco, B; Alves-Pimenta, S; Ginja, M; Goncalves, L;

Publicação
INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021

Abstract
Hip dysplasia is a genetic disease that causes the laxity of the hip joint and is one of the most common skeletal diseases found in dogs. Diagnosis is performed through an X-ray analysis by a specialist and the only way to reduce the incidence of this condition is through selective breeding. Thus, there is a need for an automated tool that can assist the specialist in diagnosis. In this article, our objective is to develop models that allow segmentation of the femur and acetabulum, serving as a foundation for future solutions for the automated detection of hip dysplasia. The studied models present state-of-the-art results, reaching dice scores of 0.98 for the femur and 0.93 for the acetabulum.

2022

Automatic Classification of Foot Thermograms Using Machine Learning Techniques

Autores
Filipe, V; Teixeira, P; Teixeira, A;

Publicação
ALGORITHMS

Abstract
Diabetic foot is one of the main complications observed in diabetic patients; it is associated with the development of foot ulcers and can lead to amputation. In order to diagnose these complications, specialists have to analyze several factors. To aid their decisions and help prevent mistakes, the resort to computer-assisted diagnostic systems using artificial intelligence techniques is gradually increasing. In this paper, two different models for the classification of thermograms of the feet of diabetic and healthy individuals are proposed and compared. In order to detect and classify abnormal changes in the plantar temperature, machine learning algorithms are used in both models. In the first model, the foot thermograms are classified into four classes: healthy and three categories for diabetics. The second model has two stages: in the first stage, the foot is classified as belonging to a diabetic or healthy individual, while, in the second stage, a classification refinement is conducted, classifying diabetic foot into three classes of progressive severity. The results show that both proposed models proved to be efficient, allowing us to classify a foot thermogram as belonging to a healthy or diabetic individual, with the diabetic ones divided into three classes; however, when compared, Model 2 outperforms Model 1 and allows for a better performance classification concerning the healthy category and the first class of diabetic individuals. These results demonstrate that the proposed methodology can be a tool to aid medical diagnosis.

2022

Using Computer Vision to Track Facial Color Changes and Predict Heart Rate

Autores
Khanal, SR; Sampaio, J; Exel, J; Barroso, J; Filipe, V;

Publicação
JOURNAL OF IMAGING

Abstract
The current technological advances have pushed the quantification of exercise intensity to new era of physical exercise sciences. Monitoring physical exercise is essential in the process of planning, applying, and controlling loads for performance optimization and health. A lot of research studies applied various statistical approaches to estimate various physiological indices, to our knowledge, no studies found to investigate the relationship of facial color changes and increased exercise intensity. The aim of this study was to develop a non-contact method based on computer vision to determine the heart rate and, ultimately, the exercise intensity. The method was based on analyzing facial color changes during exercise by using RGB, HSV, YCbCr, Lab, and YUV color models. Nine university students participated in the study (mean age = 26.88 +/- 6.01 years, mean weight = 72.56 +/- 14.27 kg, mean height = 172.88 +/- 12.04 cm, six males and three females, and all white Caucasian). The data analyses were carried out separately for each participant (personalized model) as well as all the participants at a time (universal model). The multiple auto regressions, and a multiple polynomial regression model were designed to predict maximum heart rate percentage (maxHR%) from each color models. The results were analyzed and evaluated using Root Mean Square Error (RMSE), F-values, and R-square. The multiple polynomial regression using all participants exhibits the best accuracy with RMSE of 6.75 (R-square = 0.78). Exercise prescription and monitoring can benefit from the use of these methods, for example, to optimize the process of online monitoring, without having the need to use any other instrumentation.

  • 83
  • 605