Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Nuno Cruz

2023

Autonomous Underwater Vehicles Identification through a Kernel Regressor

Autores
dos Santos, PL; Azevedo Perdicoulis, TP; Salgado, PA; Ferreira, BM; Cruz, NA;

Publicação
OCEANS 2023 - LIMERICK

Abstract
A kernel regressor to estimate a six-degree-of-fredoom non linear model of an autonomous underwater vehicle is proposed. Although this estimator assumes that the model coefficients are linear combinations of basis functions, it circumvents the problem of specifying the basis functions by using the kernel trick. The Gaussian radial basis function is the chosen kernel, with the Kernel matrix being regularized by its principal components. The variance of the Gaussian radial basis function and the number of principal components are hyper-parameters to be determined by the minimisation of a final prediction error criterion and using the training data. A simulated autonomous underwater vehicle is proposed was used as case study.

2023

Feature Extraction Towards Underwater SLAM using Imaging Sonar

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA;

Publicação
OCEANS 2023 - LIMERICK

Abstract
Blob features are particularly common in acoustic imagery, as isolated objects (e.g., moorings, mines, rocks) appear as blobs in the acquired images. This work focuses the application of the SIFT, SURF, KAZE and U-SURF feature extraction algorithms for blob feature tracking towards Simultaneous Localization and Mapping applications. We introduce a modified feature extraction and matching pipeline intended to improve feature detection and matching precision, tackling performance deterioration caused by the differences between optical and acoustic imagery. Experimental evaluation was undertaken resorting to datasets collected from a water tank structure.

2024

Probabilistic Positioning of a Mooring Cable in Sonar Images for In-Situ Calibration of Marine Sensors

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA; Diamant, R;

Publicação
IEEE TRANSACTIONS ON MOBILE COMPUTING

Abstract
The calibration of sensors stationed along a cable in marine observatories is a time-consuming and expensive operation that involves taking the mooring out of the water periodically. In this paper, we present a method that allows an underwater vehicle to approach a mooring, in order to take reference measurements along the cable for in-situ sensor calibration. We use the vehicle's Mechanically Scanned Imaging Sonar (MSIS) to identify the cable's reflection within the sonar image. After pre-processing the image to remove noise, enhance contour lines, and perform smoothing, we employ three detection steps: 1) selection of regions of interest that fit the cable's reflection pattern, 2) template matching, and 3) a track-before-detect scheme that utilized the vehicle's motion. The later involves building a lattice of template matching responses for a sequence of sonar images, and using the Viterbi algorithm to find the most probable sequence of cable locations that fits the maximum speed assumed for the surveying vessel. Performance is explored in pool and sea trials, and involves an MSIS onboard an underwater vehicle scanning its surrounding to identify a steel-core cable. The results show a sub-meter accuracy in the multi-reverberant pool environment and in the sea trial. For reproducibility, we share our implementation code.

2024

Depth Control of an Underwater Sensor Platform: Comparison between Variable Buoyancy and Propeller Actuated Devices

Autores
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publicação
SENSORS

Abstract
Underwater long-endurance platforms are crucial for continuous oceanic observation, allowing for sustained data collection from a multitude of sensors deployed across diverse underwater environments. They extend mission durations, reduce maintenance needs, and significantly improve the efficiency and cost-effectiveness of oceanographic research endeavors. This paper investigates the closed-loop depth control of actuation systems employed in underwater vehicles, focusing on the energy consumption of two different mechanisms: variable buoyancy and propeller actuated devices. Using a prototype previously developed by the authors, this paper presents a detailed model of the vehicle using both actuation solutions. The proposed model, although being a linear-based one, accounts for several nonlinearities that are present such as saturations, sensor quantization, and the actuator brake model. Also, it allows a simple estimation of the energy consumption of both actuation solutions. Based on the developed models, this study then explores the intricate interplay between energy consumption and control accuracy. To this end, several PID-based controllers are developed and tested in simulation. These controllers are used to evaluate the dynamic response and power requirements of variable buoyancy systems and propeller actuated devices under various operational conditions. Our findings contribute to the optimization of closed-loop depth control strategies, offering insights into the trade-offs between energy efficiency and system effectiveness in diverse underwater applications.

2024

Comparison of Pallet Detection and Location Using COTS Sensors and AI Based Applications

Autores
Caldana, D; Carvalho, R; Rebelo, PM; Silva, MF; Costa, P; Sobreira, H; Cruz, N;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1

Abstract
Autonomous Mobile Robots (AMR) are seeing an increased introduction in distinct areas of daily life. Recently, their use has expanded to intralogistics, where forklift type AMR are applied in many situations handling pallets and loading/unloading them into trucks. One of the these vehicles requirements, is that they are able to correctly identify the location and status of pallets, so that the forklifts AMR can insert the forks in the right place. Recently, some commercial sensors have appeared in the market for this purpose. Given these considerations, this paper presents a comparison of the performance of two different approaches for pallet detection: using a commercial off-the-shelf (COTS) sensor and a custom developed application based on Artificial Intelligence algorithms applied to an RGB-D camera, where both the RGB and depth data are used to estimate the position of the pallet pockets.

2024

Variable Structure Controller for Energy Savings in an Underwater Sensor Platform

Autores
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publicação
SENSORS

Abstract
This paper introduces a new variable structure controller designed for depth control of an autonomous underwater sensor platform equipped with a variable buoyancy module. To that end, the prototype linear model is presented, and a finite element-based method is used to estimate one of its parameters, the hull deformation due to pressure. To manage potential internal disturbances like hull deformation or external disturbances like weight changes, a disturbance observer is developed. An analysis of the observer steady-state estimation error in relation to input disturbances and system parameter uncertainties is developed. The locations of the observer poles according to its parameters are also identified. The variable structure controller is developed, keeping energy savings in mind. The proposed controller engages when system dynamics are unfavorable, causing the vehicle to deviate from the desired reference, and disengages when dynamics are favorable, guiding the vehicle toward the target reference. A detailed analysis determines the necessary switching control actions to ensure the system reaches the desired reference. Finally, simulations are run to compare the proposed controller's performance with that of PID-based controllers recently developed in the literature, assessing dynamic response and energy consumption under various operating conditions. Both the VBM- and propeller-actuated vehicles were evaluated. The results demonstrate that the proposed controller achieves an average energy consumption reduction of 22% compared to the next most efficient PID-based controller for the VBM-actuated vehicle, though with some impact on control performance.

  • 21
  • 22