Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por José Lima

2019

Coverage Path Planning Optimization Based on Q-Learning Algorithm

Autores
Piardi, L; Lima, J; Pereira, AI; Costa, P;

Publicação
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018)

Abstract
Mobile robot applications are increasing its usability in industries and services (examples: vacuum cleaning, painting and farming robots, among others). Some of the applications require that the robot moves in an environment between two positions while others require that the robot scans all the positions (Coverage Path Planning). Optimizing the traveled distance or the time to scan the path, should be done in order to reduce the costs. This paper addresses an optimization approach of the coverage path planning using Q-Learning algorithm. Comparison with other methods allows to validate the methodology.

2020

Autonomous Robot Navigation for Automotive Assembly Task: An Industry Use-Case

Autores
Sobreira, H; Rocha, L; Lima, J; Rodrigues, F; Moreira, AP; Veiga, G;

Publicação
FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 1

Abstract
Automobile industry faces one of the most flexible productivity caused by the number of customized models variants due to the buyers needs. This fact requires the production system to introduce flexible, adaptable and cooperative with humans solutions. In the present work, a panel that should be mounted inside a van is addressed. For that purpose, a mobile manipulator is suggested that could share the same space with workers helping each other. This paper presents the navigation system for the robot that enters the van from the rear door after a ramp, operates and exits. The localization system is based on 3DOF methodologies that allow the robot to operate autonomously. Real tests scenarios prove the precision and repeatability of the navigation system outside, inside and during the ramp access of the van.

2020

Development of an Autonomous Mobile Towing Vehicle for Logistic Tasks

Autores
Rocha, C; Sousa, I; Ferreira, F; Sobreira, H; Lima, J; Veiga, G; Moreira, AP;

Publicação
FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 1

Abstract
Frequently carrying high loads and performing repetitive tasks compromises the ergonomics of individuals, a recurrent scenario in hospital environments. In this paper, we design a logistic planner of a fleet of autonomous mobile robots for the automation of transporting trolleys around the hospital, which is independent of the space configuration, and robust to loss of network and deadlocks. Our robotic solution has an innovative gripping system capable of grasping and pulling non-modified standard trolleys just by coupling a plate. Robots are able to navigate autonomously, to avoid obstacles assuring the safety of operators, to identify and dock a trolley, to access charging stations and elevators, and to communicate with the latter. An interface was built allowing users to command the robots through a web server. It is shown how the proposed methodology behaves in experiments conducted at the Faculty of Engineering of the University of Porto and Braga's Hospital.

2018

Path planning optimization method based on genetic algorithm for mapping toxic environment

Autores
Piardi, L; Lima, J; Pereira, AI; Costa, P;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
The ionizing radiation is used in the nuclear medicine field during the execution of diagnosis exams. The administration of nuclear radio pharmaceutical components to the patient contaminates the environment. The main contribution of this work is to propose a path planning method for scanning the nuclear contaminated environment with a mobile robot optimizing the traveled distance. The Genetic Algorithm methodology is proposed and compared with other approaches and the final solution is validated in simulated and real environment in order to achieve a closer approximation to reality. © 2018, Springer International Publishing AG, part of Springer Nature.

2020

Path Planning Aware of Robot's Center of Mass for Steep Slope Vineyards

Autores
Santos, L; Santos, F; Mendes, J; Costa, P; Lima, J; Reis, R; Shinde, P;

Publicação
ROBOTICA

Abstract
Steep slope vineyards are a complex scenario for the development of ground robots. Planning a safe robot trajectory is one of the biggest challenges in this scenario, characterized by irregular surfaces and strong slopes (more than 35 degrees). Moving the robot through a pile of stones, spots with high slope or/and with wrong robot yaw may result in an abrupt fall of the robot, damaging the equipment and centenary vines, and sometimes imposing injuries to humans. This paper presents a novel approach for path planning aware of center of mass of the robot for application in sloppy terrains. Agricultural robotic path planning (AgRobPP) is a framework that considers the A* algorithm by expanding inner functions to deal with three main inputs: multi-layer occupation grid map, altitude map and robot's center of mass. This multi-layer grid map is updated by obstacles taking into account the terrain slope and maximum robot posture. AgRobPP is also extended with algorithms for local trajectory replanning during the execution of a trajectory that is blocked by the presence of an obstacle, always assuring the safety of the re-planned path. AgRobPP has a novel PointCloud translator algorithm called PointCloud to grid map and digital elevation model (PC2GD), which extracts the occupation grid map and digital elevation model from a PointCloud. This can be used in AgRobPP core algorithms and farm management intelligent systems as well. AgRobPP algorithms demonstrate a great performance with the real data acquired from AgRob V16, a robotic platform developed for autonomous navigation in steep slope vineyards.

2019

A Temporal Optimization Applied to Time Enhanced A*

Autores
Moura, P; Costa, P; Lima, J; Costa, P;

Publicação
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018)

Abstract
The coordination problem in multi-AGV systems can be approached as an optimization problem and aims to make possible the execution of several tasks simultaneously, avoiding collision and deadlock situations and reducing the average execution time. Time Enhanced A* (TEA*) is one of the path planning algorithms developed for this purpose. This paper focus on the implementation of the TEA* for real industrial applications. In that context, a new approach was developed to complement the TEA* with the capacity to approximate the planning of the future positions for differential robots with its real behaviour.

  • 8
  • 30