Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por António Paulo Moreira

2020

Driverless Wheelchair for Patient's On-Demand Transportation in Hospital Environment

Autores
Baltazar, A; Petry, MR; Silva, MF; Moreira, AP;

Publicação
2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020)

Abstract
The transport of patients from the inpatient service to the operating room is a recurrent task in the hospital routine. This task is repetitive, non-ergonomic, time consuming, and requires the labor of patient transporters. In this paper is presented the design of a driverless wheelchair under development capable of providing an on-demand mobility service to hospitals. The proposed wheelchair can receive transportation requests directly from the hospital information management system, pick-up patients at their beds, navigate autonomously through different floors, avoid obstacles, communicate with elevators, and drop patients off at the designated destination.

2020

Omnidirectional robot modeling and simulation

Autores
Magalhaes, SA; Moreira, AP; Costa, P;

Publicação
2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020)

Abstract
A robots simulation system is a basis need for any robotics application. With it, developers teams of robots can test their algorithms and make initial calibrations without risk of damage to the real robots, assuring safety. However, build these simulation environments is usually a time-consuming work, and when considering robot fleets, the simulation reveals to be computing expensive. With it, developers building teams of robots can test their algorithms and make initial calibrations without risk of damage to the real robots, assuring safety. An omnidirectional robot from the 5DPO robotics soccer team served to test this approach. The modeling issue was divided into two steps: modeling the motor's non-linear features and modeling the general behavior of the robot. A proper fitting of the robot was reached, considering the velocity robot's response.

2020

Evolution of Odometry Calibration Methods for Ground Mobile Robots

Autores
Sousa, RB; Petry, MR; Moreira, AP;

Publicação
2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020)

Abstract
Localisation is a critical problem in ground mobile robots. For dead reckoning, odometry is usually used. A disadvantage of using it alone is unbounded error accumulation. So, odometry calibration is critical in reducing error propagation. This paper presents an analysis of the developments and advances of systematic methods for odometry calibration. Four steering geometries were analysed, namely differential drive, Ackerman, tricycle and omnidirectional. It highlights the advances made on this field and covers the methods since UMBmark was proposed. The points of analysis are the techniques and test paths used, errors considered in calibration, and experiments made to validate each method. It was obtained fifteen methods for differential drive, three for Ackerman, two for tricycle, and three for the omnidirectional steering geometry. A disparity was noted, compared with the real utilisation, between the number of published works addressing differential drive and tricycle/Ackerman. Still, odometry continues evolving since UMBmark was proposed.

2019

Digital Twin in Industry 4.0: Technologies, Applications and Challenges

Autores
Pires, F; Cachada, A; Barbosa, J; Moreira, AP; Leitao, P;

Publicação
2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN)

Abstract
The digital transformation that is on-going worldwide, and triggered by the Industry 4.0 initiative, has brought to the surface new concepts and emergent technologies. One of these new concepts is the Digital Twin, which recently started gaining momentum, and is related to creating a virtual copy of the physical system, providing a connection between the real and virtual systems to collect and analyze and simulate data in the virtual model to improve the performance of the real system. The benefits of using the digital twin approach is attracting significant attention and interest from research and industry communities in the last few years, and its importance will increase in the upcoming years. Having this in mind, this paper surveys and discusses the digital twin concept in the context of the 4th industrial revolution, particularly focusing the concept and functionalities, the associated technologies, the industrial applications and the research challenges. The applicability of the digital concept is illustrated by the virtualisation of an UR3 collaborative robot which used the V-REP simulation environment and the Modbus communication protocol.

2020

Recursive Approach of Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation

Autores
Souza, MBA; Honorio, LD; de Oliveira, EJ; Moreira, APGM;

Publicação
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS

Abstract
Optimal Input Design (OID) methodologies are developed to find a signal that could best estimate a set of parameters of a given model. Their application in constrained nonlinear systems, especially when the search space limits or the initial conditions are unknown, may present several difficulties due to the numerical instability related to the optimization processes. A good choice over the parameters possible ranges is a trade-off among numerical stability, search space size, and effectiveness, and it is hardly found. To deal with this problem, this paper proposes a series of changes in the Sub-Optimal Excitation Signal Generation and Optimal Parameter Estimation (SOESGOPE) methodology. First, the limits over the parameters are tightly adjusted according to their confidence. A recursive approach runs the optimization methodology, analyzes the solution's feasibility and marginal costs given by the Lagrange Multipliers, and selects a direction that could improve the system's response. This approach improves the convergence and the assertiveness of the estimation process. To validate this approach, some cases, including a parameters estimation of a mobile robot nonlinear system, are tested.

2013

3-D position estimation from inertial sensing: Minimizing the error from the process of double integration of accelerations

Autores
Neto, P; Pires, JN; Moreira, AP;

Publicação
IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, November 10-13, 2013

Abstract

  • 23
  • 43