Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Aníbal Matos

2020

Deep Learning for Underwater Visual Odometry Estimation

Autores
Teixeira, B; Silva, H; Matos, A; Silva, E;

Publicação
IEEE ACCESS

Abstract
This paper addresses Visual Odometry (VO) estimation in challenging underwater scenarios. Robot visual-based navigation faces several additional difficulties in the underwater context, which severely hinder both its robustness and the possibility for persistent autonomy in underwater mobile robots using visual perception capabilities. In this work, some of the most renown VO and Visual Simultaneous Localization and Mapping (v-SLAM) frameworks are tested on underwater complex environments, assessing the extent to which they are able to perform accurately and reliably on robotic operational mission scenarios. The fundamental issue of precision, reliability and robustness to multiple different operational scenarios, coupled with the rise in predominance of Deep Learning architectures in several Computer Vision application domains, has prompted a great a volume of recent research concerning Deep Learning architectures tailored for visual odometry estimation. In this work, the performance and accuracy of Deep Learning methods on the underwater context is also benchmarked and compared to classical methods. Additionally, an extension of current work is proposed, in the form of a visual-inertial sensor fusion network aimed at correcting visual odometry estimate drift. Anchored on a inertial supervision learning scheme, our network managed to improve upon trajectory estimates, producing both metrically better estimates as well as more visually consistent trajectory shape mimicking.

2020

MARESye: A hybrid imaging system for underwater robotic applications

Autores
Pinto, AM; Matos, AC;

Publicação
INFORMATION FUSION

Abstract
This article presents an innovative hybrid imaging system that provides dense and accurate 3D information from harsh underwater environments. The proposed system is called MARESye and captures the advantages of both active and passive imaging methods: multiple light stripe range (LSR) and a photometric stereo (PS) technique, respectively. This hybrid approach fuses information from these techniques through a data-driven formulation to extend the measurement range and to produce high density 3D estimations in dynamic underwater environments. This hybrid system is driven by a gating timing approach to reduce the impact of several photometric issues related to the underwater environments such as, diffuse reflection, water turbidity and non-uniform illumination. Moreover, MARESye synchronizes and matches the acquisition of images with sub-sea phenomena which leads to clear pictures (with a high signal-to-noise ratio). Results conducted in realistic environments showed that MARESye is able to provide reliable, high density and accurate 3D data. Moreover, the experiments demonstrated that the performance of MARESye is less affected by sub-sea conditions since the SSIM index was 0.655 in high turbidity waters. Conventional imaging techniques obtained 0.328 in similar testing conditions. Therefore, the proposed system represents a valuable contribution for the inspection of maritime structures as well as for the navigation procedures of autonomous underwater vehicles during close range operations.

2019

Design of an underwater sensor network perpetually powered from AUVs

Autores
Pessoa L.M.; Duarte C.; Salgado H.M.; Correia V.; Ferreira B.; Cruz N.A.; Matos A.;

Publicação
OCEANS 2019 - Marseille, OCEANS Marseille 2019

Abstract
In this paper we evaluate the long-term deployment feasibility of a large-scale network of abandoned underwater sensors, where power is provided by autonomous underwater vehicles (AUVs) in periodic visits.

2020

MViDO: A High Performance Monocular Vision-Based System for Docking A Hovering AUV

Autores
Figueiredo, AB; Matos, AC;

Publicação
APPLIED SCIENCES-BASEL

Abstract
This paper presents a high performance (low computationally demanding) monocular vision-based system for a hovering Autonomous Underwater Vehicle (AUV) in the context of autonomous docking process-MViDO system: Monocular Vision-based Docking Operation aid. The MViDO consists of three sub-modules: a pose estimator, a tracker and a guidance sub-module. The system is based on a single camera and a three spherical color markers target that signal the docking station. The MViDO system allows the pose estimation of the three color markers even in situations of temporary occlusions, being also a system that rejects outliers and false detections. This paper also describes the design and implementation of the MViDO guidance module for the docking manoeuvres. We address the problem of driving the AUV to a docking station with the help of the visual markers detected by the on-board camera, and show that by adequately choosing the references for the linear degrees of freedom of the AUV, the AUV is conducted to the dock while keeping those markers in the field of view of the on-board camera. The main concepts behind the MViDO are provided and a complete characterization of the developed system is presented from the formal and experimental point of view. To test and evaluate the MViDO detector and pose an estimator module, we created a ground truth setup. To test and evaluate the tracker module we used the MARES AUV and the designed target in a four-meter tank. The performance of the proposed guidance law was tested on simulink/Matlab.

2019

Critical object recognition in underwater environment

Autores
Nunes A.; Gaspar A.R.; Matos A.;

Publicação
OCEANS 2019 - Marseille, OCEANS Marseille 2019

Abstract
Nowadays, ocean exploration is far from complete and the development of suitable recognition systems are crucial, to allow that the robots perform inspection and monitoring tasks in diverse conditions. The online available datasets are incomplete for these kinds of scenarios and, so it is important to build datasets that covered real condition in a simulated environment. Thus, it was developed a dataset with some man-made objects presents in the underwater environment. Moreover, it is also presented the developed method (Convolutional Neural Network) and its evaluation in diverse conditions is performed. It is also presented a comparative analysis and a discussion between the proposed algorithm and the ResNet architecture. The obtained results showed that the developed method is appropriate to classify 7 critical different objects with good performance.

2019

An Adaptive Velocity Obstacle Avoidance Algorithm for Autonomous Surface Vehicles

Autores
Campos, DF; Matos, A; Pinto, AM;

Publicação
2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)

Abstract
This paper presents a new algorithm for a real-time obstacle avoidance for autonomous surface vehicles (ASV) that is capable of undertaking preemptive actions in complex and challenging scenarios. The algorithm is called adaptive velocity obstacle avoidance (AVOA) and takes into consideration the kinematic and dynamic constraints of autonomous vessels along with a protective zone concept to determine the safe crossing distance to obstacles. A configuration space that includes both the position and velocity of static or dynamic elements within the field-of-view of the ASV is supporting a particle swarm optimization procedure that minimizes the risk of harm and the deviation towards a predefined course while generating a navigation path with capabilities to prevent potential collisions. Extensive experiments demonstrate the ability of AVOA to select a velocity estimative for ASVs that originates a smoother, safer and, at least, two times more effective collision-free path when compared to existing techniques.

  • 12
  • 25