Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Aníbal Matos

2000

5dpo-2000 team description

Autores
Costa, P; Moreira, A; Sousa, A; Marques, P; Costa, P; Matos, A;

Publicação
ROBOCUP-99: ROBOT SOCCER WORLD CUP III

Abstract
This paper describes the 5dpo-2000 team, The paper will be divided into three main sections, corresponding to three main blocks: the Global Level, the Local Level and the Interface Level. These Levels, their subsystems and some implementation details will be described next.

2023

Procedural Point Cloud Modelling in Scan-to-BIM and Scan-vs-BIM Applications: A Review

Autores
Abreu, N; Pinto, A; Matos, A; Pires, M;

Publicação
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION

Abstract
Point cloud processing is an essential task in many applications in the AEC domain, such as automated progress assessment, quality control and 3D reconstruction. As much of the procedure used to process the point clouds is shared among these applications, we identify common processing steps and analyse relevant algorithms found in the literature published in the last 5 years. We start by describing current efforts on both progress and quality monitoring and their particular requirements. Then, in the context of those applications, we dive into the specific procedures related to processing point clouds acquired using laser scanners. An emphasis is given to the scan planning process, as it can greatly influence the data collection process and the quality of the data. The data collection phase is discussed, focusing on point cloud data acquired by laser scanning. Its operating mode is explained and the factors that influence its performance are detailed. Data preprocessing methodologies are presented, aiming to introduce techniques used in the literature to, among other aspects, increase the registration performance by identifying and removing redundant data. Geometry extraction techniques are described, concerning both interior and outdoor reconstruction, as well as currently used relationship representation structures. In the end, we identify certain gaps in the literature that may constitute interesting topics for future research. Based on this review, it is evident that a key limitation associated with both Scan-to-BIM and Scan-vs-BIM algorithms is handling missing data due to occlusion, which can be reduced by multi-platform sensor fusion and efficient scan planning. Another limitation is the lack of consideration for laser scanner performance characteristics when planning the scanning operation and the apparent disconnection between the planning and data collection stages. Furthermore, the lack of representative benchmark datasets is hindering proper comparison of Scan-to-BIM and Scan-vs-BIM techniques, as well as the integration of state-of-the-art deep-learning methods that can give a positive contribution in scene interpretation and modelling.

2023

ATLANTIS Coastal Testbed: A near-real playground for the testing and validation of robotics for O&M

Autores
Pinto, AM; Marques, JVA; Abreu, N; Campos, DF; Pereira, MI; Gonçalves, E; Campos, HJ; Pereira, P; Neves, F; Matos, A; Govindaraj, S; Durand, L;

Publicação
OCEANS 2023 - LIMERICK

Abstract
The demonstration of robotic technologies in real environments is essential for technology developers and end-users to fully showcase the benefits of theirs solutions, and contributes to the promotion of the transition of inspection and maintenance methodologies towards automated robotic strategies. However, before allowing technologies to be demonstrated in real, operating offshore wind-farms, there is a need to de-risk the technology, to ensure its safe operation offshore. As part of the ATLANTIS project, a pioneer pilot infrastructure, the ATLANTIS Test Centre, was installed in Viana do Castelo, Portugal. This infrastructure will allow the demonstration of key enabling robotic technologies for offshore inspection and maintenance. The Test Centre is composed of two distinct testbeds, and a supervisory control centre, enabling the de-risking, testing, validation and demonstration of technologies, in both near-real and real environments. This paper presents the details of the Coastal Testbed of the ATLANTIS Test Centre, from implementation to available resources and infrastructures and environment details.

2023

Comparative Study of Semantic Segmentation Methods in Harbour Infrastructures

Autores
Nunes, A; Gaspar, AR; Matos, A;

Publicação
OCEANS 2023 - LIMERICK

Abstract
Nowadays, the semantic segmentation of the images of the underwater world is crucial, as these results can be used in various applications such as manipulation or one of the most important in the semantic mapping of the environment. In this way, the structure of the scene observed by the robot can be recovered, and at the same time, the robot can identify the class of objects seen and choose the next action during the mission. However, semantic segmentation using cameras in underwater environments is a non-trivial task, as it depends on the quality of the acquired images (which change over time due to various factors), the diversification of objects and structures that can be inspected during the mission, and the quality of the training performed prior to the evaluation, as poor training means an incorrect estimation of the object class or a poor delineation of the object. Therefore, in this paper, a comparative study of suitable modern semantic segmentation algorithms is conducted to determine whether they can be used in underwater scenarios. Nowadays, it is very important to equip the robot with the ability to inspect port facilities, as this scenario is of particular interest due to the large variety of objects and artificial structures, and to know and recognise most of them. For this purpose, the most suitable dataset available online was selected, which is the closest to the intended context. Therefore, several parameters and different conditions were considered to perform a complete evaluation, and some limitations and improvements are described. The SegNet model shows the best overall accuracy, reaching more than 80%, but some classes such as robots and plants degrade the quality of the performance (considering the mean accuracy and the mean IoU metric).

2023

Visual Place Recognition for Harbour Infrastructures Inspection

Autores
Gaspar, AR; Nunes, A; Matos, A;

Publicação
OCEANS 2023 - LIMERICK

Abstract
The harbour infrastructures have some structures that still need regular inspection. However, the nature of this environment presents a number of challenges when it comes to determining an accurate vehicle position and consequently performing successful image similarity detection. In addition, the underwater environment is highly dynamic, making place recognition harder because the appearance of a place can change over time. In these close-range operations, the visual sensors have a major impact. There are some factors that degrade the quality of the captured images, but image preprocessing steps are increasingly used. Therefore, in this paper, a purely visual similarity detection with enhancement technique is proposed to overcome the inherent perceptual problems in a port scenario. Considering the lack of available data in this context and to facilitate the variation of environmental parameters, a harbour scenario was simulated using the Stonefish simulator. The experiments were performed on some predefined trajectories containing the poor visibility conditions typical of these scenarios. The place recognition approach improves the performance by up to 10% compared to the results obtained with captured images. In general, it provides a good balance in coping with turbidity and light incidence at low computational cost and achieves a performance of about 80%.

2023

Improving Semantic Segmentation Performance in Underwater Images

Autores
Nunes, A; Matos, A;

Publicação
JOURNAL OF MARINE SCIENCE AND ENGINEERING

Abstract
Nowadays, semantic segmentation is used increasingly often in exploration by underwater robots. For example, it is used in autonomous navigation so that the robot can recognise the elements of its environment during the mission to avoid collisions. Other applications include the search for archaeological artefacts, the inspection of underwater structures or in species monitoring. Therefore, it is necessary to improve the performance in these tasks as much as possible. To this end, we compare some methods for image quality improvement and data augmentation and test whether higher performance metrics can be achieved with both strategies. The experiments are performed with the SegNet implementation and the SUIM dataset with eight common underwater classes to compare the obtained results with the already known ones. The results obtained with both strategies show that they are beneficial and lead to better performance results by achieving a mean IoU of 56% and an increased overall accuracy of 81.8%. The result for the individual classes shows that there are five classes with an IoU value close to 60% and only one class with an IoU value less than 30%, which is a more reliable result and is easier to use in real contexts.

  • 24
  • 25