2011
Autores
Pires, T; Rodrigues, P;
Publicação
BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY
Abstract
2009
Autores
Gama, J; Rodrigues, PP; Sebastião, R;
Publicação
Proceedings of the 2009 ACM Symposium on Applied Computing (SAC), Honolulu, Hawaii, USA, March 9-12, 2009
Abstract
Learning from data streams is a research area of increasing importance. Nowadays, several stream learning algorithms have been developed. Most of them learn decision models that continuously evolve over time, run in resource-aware environments, and detect and react to changes in the environment generating data. One important issue, not yet conveniently addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. In this paper we propose a general framework for assessing the quality of streaming learning algorithms. We defend the use of Predictive Sequential error estimates over a sliding window to assess performance of learning algorithms that learn from open-ended data streams in non-stationary environments. This paper studies properties of convergence and methods to comparatively assess algorithms performance. Copyright 2009 ACM.
2007
Autores
Rodrigues, PP; Gama, J;
Publicação
Modulad
Abstract
2012
Autores
Rodrigues, PP; Gama, J;
Publicação
CEUR Workshop Proceedings
Abstract
Smart grids consist of millions of automated electronic meters that will be installed in electricity distribution networks and connected to servers that will manage grid supervision, billing and customer services. World sustainability regarding energy management will definitely rely on such grids, so smart grids need also to be sustainable themselves. This sustainability depends on several research problems that emerge from this new setting (from power balance to energy markets) requiring new approaches for knowledge discovery and decision support. This paper presents a holistic distributed stream clustering view of possible solutions for those problems, supported by previous research in related domains. The approach is based on two orthogonal clustering algorithms, combined for a holistic clustering of the grid. Experimental results are included to illustrate the benefits of each algorithm, while the proposal is discussed in terms of application to smart grid problems. This holistic approach could be used to help solving some of the smart grid intelligent layer research problems, thus improving global sustainability.
2011
Autores
Gama, J; Rodrigues, PP; Lopes, L;
Publicação
INTELLIGENT DATA ANALYSIS
Abstract
Nowadays applications produce infinite streams of data distributed across wide sensor networks. In this work we study the problem of continuously maintain a cluster structure over the data points generated by the entire network. Usual techniques operate by forwarding and concentrating the entire data in a central server, processing it as a multivariate stream. In this paper, we propose DGClust, a new distributed algorithm which reduces both the dimensionality and the communication burdens, by allowing each local sensor to keep an online discretization of its data stream, which operates with constant update time and (almost) fixed space. Each new data point triggers a cell in this univariate grid, reflecting the current state of the data stream at the local site. Whenever a local site changes its state, it notifies the central server about the new state it is in. This way, at each point in time, the central site has the global multivariate state of the entire network. To avoid monitoring all possible states, which is exponential in the number of sensors, the central site keeps a small list of counters of the most frequent global states. Finally, a simple adaptive partitional clustering algorithm is applied to the frequent states central points in order to provide an anytime definition of the clusters centers. The approach is evaluated in the context of distributed sensor networks, focusing on three outcomes: loss to real centroids, communication prevention, and processing reduction. The experimental work on synthetic data supports our proposal, presenting robustness to a high number of sensors, and the application to real data from physiological sensors exposes the aforementioned advantages of the system.
2009
Autores
Rodrigues, PP; Gama, J;
Publicação
INTELLIGENT DATA ANALYSIS
Abstract
Sensors distributed all around electrical-power distribution networks produce streams of data at high-speed. From a data mining perspective, this sensor network problem is characterized by a large number of variables ( sensors), producing a continuous flow of data, in a dynamic non-stationary environment. Companies make decisions to buy or sell energy based on load profiles and forecast. In this work we analyze the most relevant data mining problems and issues: continuously learning clusters and predictive models, model adaptation in large domains, and change detection and adaptation. The goal is to continuously maintain a clustering model, defining profiles, and a predictive model able to incorporate new information at the speed data arrives, detecting changes and adapting the decision models to the most recent information. We present experimental results in a large real-world scenario, illustrating the advantages of the continuous learning and its competitiveness against Wavelets based prediction. We also propose a light electrical load visualization system which enhances the ability to inspect forecast results in mobile devices.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.