Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro Pereira Rodrigues

2011

Learning from Data Streams

Autores
Gama, J; Rodrigues, PP;

Publicação
Encyclopedia of Data Warehousing and Mining, Second Edition

Abstract

2012

Estimating reliability for assessing and correcting individual streaming predictions

Autores
Rodrigues, PPE; Bosnic, Z; Gama, J; Kononenko, I;

Publicação
Reliable Knowledge Discovery

Abstract
Several predictive systems are nowadays vital for operations and decision support. The quality of these systems is most of the time defined by their average accuracy which has low or no information at all about the estimated error of each individual prediction. In these cases, users should be allowed to associate a measure of reliability to each prediction. However, with the advent of data streams, batch state-of-the-art reliability estimates need to be redefined. In this chapter we adapt and evaluate five empirical measures for online reliability estimation of individual predictions: similarity-based (k-NN) error, local sensitivity (bias and variance) and online bagging predictions (bias and variance). Evaluation is performed with a neural network base model on two different problems, with results showing that online bagging and k-NN estimates are consistently correlated with the error of the base model. Furthermore, we propose an approach for correcting individual predictions based on the CNK reliability estimate. Evaluation is done on a real-world problem (prediction of the electricity load for a selected European geographical region), using two different regression models: neural network and the k nearest neighbors algorithm. Comparison is performed with corrections based on the Kalman filter. The results show that our method performs better than the Kalman filter, significantly improving the original predictions to more accurate values.

2009

Knowledge discovery for sensor network comprehension

Autores
Rodrigues, PP; Gama, J; Lopes, L;

Publicação
Intelligent Techniques for Warehousing and Mining Sensor Network Data

Abstract

2008

Clustering Distributed Sensor Data Streams

Autores
Rodrigues, PP; Gama, J; Lopes, L;

Publicação
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART II, PROCEEDINGS

Abstract
Nowadays applications produce infinite streams of data distributed across wide sensor networks. In this work we study the problem of continuously maintain a cluster structure over the data points generated by the entire network. Usual techniques operate by forwarding and concentrating the entire data in a central server, processing it as a multivariate stream. In this paper, we propose DGClust, a new distributed algorithm which reduces both the dimensionality and the communication burdens, by allowing each local sensor to keep an online discretization of its data stream, which operates with constant update time and (almost) fixed space. Each new data point triggers a cell in this univariate grid, reflecting the current state of the data stream at the local site. Whenever a local site changes its state, it notifies the central server about the new state it is in. This way, at each point in time, the central site has the global multivariate state of the entire network. To avoid monitoring all possible states, which is exponential in the number of sensors, the central site keeps a small list of counters of the most frequent global states. Finally, a simple adaptive partitional clustering algorithm is applied to the frequent states central points in order to provide an anytime definition of the clusters centers. The approach is evaluated in the context of distributed sensor networks, presenting both empirical and theoretical evidence of its advantages.

2010

Monitoring Incremental Histogram Distribution for Change Detection in Data Streams

Autores
Sebastiao, R; Gama, J; Rodrigues, PP; Bernardes, J;

Publicação
KNOWLEDGE DISCOVERY FROM SENSOR DATA

Abstract
Histograms are a common technique for density estimation and they have been widely used as a tool in exploratory data analysis. Learning histograms from static and stationary data is a well known topic. Nevertheless, very few works discuss this problem when we have a continuous flow of data generated from dynamic environments. The scope of this paper is to detect changes from high-speed time-changing data streams. To address this problem, we construct histograms able to process examples once at the rate they arrive. The main goal of this work is continuously maintain a histogram consistent with the current status of the nature. We study strategies to detect changes in the distribution generating examples, and adapt the histogram to the most recent data by forgetting outdated data. We use the Partition Incremental Discretization algorithm that was designed to learn histograms from high-speed data streams. We present a method to detect whenever a change in the distribution generating examples occurs. The base idea consists of monitoring distributions from two different time windows: the reference window, reflecting the distribution observed in the past; and the current window which receives the most recent data. The current window is cumulative and can have a fixed or an adaptive step depending on the distance between distributions. We compared both distributions using Kullback-Leibler divergence, defining a threshold for change detection decision based on the asymmetry of this measure. We evaluated our algorithm with controlled artificial data sets and compare the proposed approach with nonparametric tests. We also present results with real word data sets from industrial and medical domains. Those results suggest that an adaptive window's step exhibit high probability in change detection and faster detection rates, with few false positives alarms.

2011

Correcting streaming predictions of an electricity load forecast system using a prediction reliability estimate

Autores
Bosnic, Z; Rodrigues, PP; Kononenko, I; Gama, J;

Publicação
Advances in Intelligent and Soft Computing

Abstract
Accurately predicting values for dynamic data streams is a challenging task in decision and expert systems, due to high data flow rates, limited storage and a requirement to quickly adapt a model to new data. We propose an approach for correcting predictions for data streams which is based on a reliability estimate for individual regression predictions. In our work, we implement the proposed technique and test it on a real-world problem: prediction of the electricity load for a selected European geographical region. For predicting the electricity load values we implement two regression models: the neural network and the k nearest neighbors algorithm. The results show that our method performs better than the referential method (i.e. the Kalman filter), significantly improving the original streaming predictions to more accurate values. © 2011 Springer-Verlag Berlin Heidelberg.

  • 22
  • 29