2023
Autores
dos Santos, PL; Azevedo Perdicoulis, TP; Salgado, PA; Ferreira, BM; Cruz, NA;
Publicação
OCEANS 2023 - LIMERICK
Abstract
A kernel regressor to estimate a six-degree-of-fredoom non linear model of an autonomous underwater vehicle is proposed. Although this estimator assumes that the model coefficients are linear combinations of basis functions, it circumvents the problem of specifying the basis functions by using the kernel trick. The Gaussian radial basis function is the chosen kernel, with the Kernel matrix being regularized by its principal components. The variance of the Gaussian radial basis function and the number of principal components are hyper-parameters to be determined by the minimisation of a final prediction error criterion and using the training data. A simulated autonomous underwater vehicle is proposed was used as case study.
2023
Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA;
Publicação
OCEANS 2023 - LIMERICK
Abstract
Blob features are particularly common in acoustic imagery, as isolated objects (e.g., moorings, mines, rocks) appear as blobs in the acquired images. This work focuses the application of the SIFT, SURF, KAZE and U-SURF feature extraction algorithms for blob feature tracking towards Simultaneous Localization and Mapping applications. We introduce a modified feature extraction and matching pipeline intended to improve feature detection and matching precision, tackling performance deterioration caused by the differences between optical and acoustic imagery. Experimental evaluation was undertaken resorting to datasets collected from a water tank structure.
2024
Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA; Diamant, R;
Publicação
IEEE TRANSACTIONS ON MOBILE COMPUTING
Abstract
The calibration of sensors stationed along a cable in marine observatories is a time-consuming and expensive operation that involves taking the mooring out of the water periodically. In this paper, we present a method that allows an underwater vehicle to approach a mooring, in order to take reference measurements along the cable for in-situ sensor calibration. We use the vehicle's Mechanically Scanned Imaging Sonar (MSIS) to identify the cable's reflection within the sonar image. After pre-processing the image to remove noise, enhance contour lines, and perform smoothing, we employ three detection steps: 1) selection of regions of interest that fit the cable's reflection pattern, 2) template matching, and 3) a track-before-detect scheme that utilized the vehicle's motion. The later involves building a lattice of template matching responses for a sequence of sonar images, and using the Viterbi algorithm to find the most probable sequence of cable locations that fits the maximum speed assumed for the surveying vessel. Performance is explored in pool and sea trials, and involves an MSIS onboard an underwater vehicle scanning its surrounding to identify a steel-core cable. The results show a sub-meter accuracy in the multi-reverberant pool environment and in the sea trial. For reproducibility, we share our implementation code.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.