2009
Autores
Braga, RAM; Petry, M; Moreira, AP; Reis, LP;
Publicação
Lecture Notes in Electrical Engineering
Abstract
Many people with severe disabilities find it difficult or even impossible to use traditional powered wheelchairs independently by manually controlling these electrical devices. Intelligent wheelchairs are a very good solution to assist severely handicapped people who are unable to operate classical electrical wheelchair by themselves in their daily activities. This paper describes a development platform for intelligent wheelchairs called IntellWheels. The intelligent system developed may be added to commercial powered wheelchairs with minimal modifications in a very straightforward manner. The paper describes the concept and design of the platform, including the hardware and software, multimodal input interface and the intelligent wheelchair prototype developed to validate the approach. Preliminary results concerning automatic movement of the IntellWheels prototype are also described showing the autonomous movement capabilities of the prototype. © 2009 Springer-Verlag Berlin Heidelberg.
2023
Autores
Martins, JG; Petry, MR; Moreira, AP;
Publicação
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
The pose estimation of a mobile robotic system is essential in many autonomous applications. Inertial sensors provide high-frequency measurements that can be used to estimate the displacement, however, for estimating the orientation, an additional filter is required. Some of the newest Attitude and Heading Reference Systems can provide a referenced estimation of the orientation of the device, allowing it to retrieve the orientation of a robotic system. However, magnetic field perturbations caused by ferromagnetic objects or induced magnetic fields might influence these systems and, consequently, lead to the accumulation of errors over time. In this paper, the performance of the Xsens fusion filter is compared with a stateof-the-art algorithm to estimate the orientation of the system under dynamic movements and in the presence of magnetic perturbations, with the goal of finding the most suitable for an Unmanned Aerial Vehicle. The results show that both filters are robust and perform well in the target scenario, with a root mean squared error between 2 and 5 degrees; however, the Xsens fusion filter does not require an extra computer to process the data.
2024
Autores
Costa, GM; Petry, MR; Martins, JG; Moreira, APGM;
Publicação
IEEE ACCESS
Abstract
Fiducial markers play a fundamental role in various fields in which precise localization and tracking are paramount. In Augmented Reality, they provide a known reference point in the physical world so that AR systems can accurately identify, track, and overlay virtual objects. This accuracy is essential for creating a seamless and immersive AR experience, particularly when prompted to cope with the sub-millimeter requirements of medical and industrial applications. This research article presents a comparative analysis of four fiducial marker tracking algorithms, aiming to assess and benchmark their accuracy and precision. The proposed methodology compares the pose estimated by four algorithms running on Hololens 2 with those provided by a highly accurate ground truth system. Each fiducial marker was positioned in 25 sampling points with different distances and orientations. The proposed evaluation method is not influenced by human error, relying only on a high-frequency and accurate motion tracking system as ground truth. This research shows that it is possible to track the fiducial markers with translation and rotation errors as low as 1.36 mm and 0.015 degrees using ArUco and Vuforia, respectively.
2024
Autores
Couto, M; Petry, MR; Silva, MF;
Publicação
TOWARDS A HYBRID, FLEXIBLE AND SOCIALLY ENGAGED HIGHER EDUCATION, VOL 2, ICL2023
Abstract
Welding is a challenging, risky, and time-consuming profession. Recently, there has been a documented shortage of trained welders, and as a result, the market is pushing for an increase in the rate at which new professionals are trained. To address this growing demand, training institutions are exploring alternative methods to train future professionals. The emergence of virtual reality technologies has led to initiatives to explore their potential for welding training. Multiple studies have suggested that virtual reality training delivers comparable, or even superior, results when compared to more conventional approaches, with shorter training times and reduced costs in consumables. This paper conducts a comprehensive review of the current state of the field of welding simulators. This involves exploring the different types of welding simulators available and evaluating their effectiveness and efficiency in meeting the learning objectives of welding training. The aim is to identify gaps in the literature, suggest future research directions, and promote the development of more effective and efficient welding simulators in the future. The research also seeks to develop a categorical system for evaluating and comparing welding simulators. This system will enable a more systematic and objective analysis of the features and characteristics of each simulator, identifying the essential characteristics that should be included in each level of classification.
2024
Autores
Ventuzelos, V; Petry, MR; Rocha, LF;
Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
The footwear industry is known for its longstanding traditional production methods that require intense manual labor. Roughing, for example, is regarded as one of the significant and critical operations in shoe manufacturing and consists of using abrasive tools to remove a thin layer of the shoe's surface, creating a slightly roughened texture that provides a better surface area for adhesion. As such, workers are typically subjected to hazardous substances (i.e., dust, chromium), repetitive strain injuries, and ergonomic challenges. Although robots can automate repetitive tasks and perform with high precision and consistency, the footwear industry is usually reluctant to employ industrial robots due to the need for restructuring. This paper addresses the challenge of re-designing the lateral roughing of uppers to allow robot-assisted manufacturing with minimal modifications in the manufacturing process. The proposed innovative system employs a robotic manipulator to perform roughing based on data collected from preceding manufacturing steps. Workers marking the mesh line of each sole-upper pair can simultaneously teach the manipulator path for that same pair, using a programming-by-demonstration approach. Multiple paths were collected by outlining a piece of footwear, converted into robot instructions, and deployed on a simulated and real industrial manipulator. The key findings of this research showcase the capability of the proposed solution to replicate collected paths accurately, indicating potential applications not only in roughing processes but also in similar tasks like primer and adhesive application.
2024
Autores
Martins, JG; Costa, GM; Petry, MR; Costa, P; Moreira, AP;
Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Current industrial environments have multiple robots working alongside humans, thus providing an operator the ability to perceive the robot's workspace correctly and to anticipate its intentions and movements through the visualization of the robot's digital twin is of utmost importance for safe and productive human-robot collaboration scenarios. Much has been studied regarding single human-single robot collaborative scenarios, but few address multi-user multi-robot scenarios. To this end, this paper presents a multi-robot multi-operator architecture, where the users' awareness is enhanced through an augmented reality head-mounted display. A multi-robot, multi-user collaborative scenario is presented in a laboratory environment with two industrial robots. Besides being able to interact with both robots in the system, each user becomes more aware of the robot's workspace and its pre-defined trajectories. Furthermore, it presents how fiducial markers can help to establish the relation between the different coordinate frames.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.