Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2018

A holistic glottal phase-related feature

Autores
Ferreira, AJ; Tribolet, JM;

Publicação
DAFx 2018 - Proceedings: 21st International Conference on Digital Audio Effects

Abstract
This paper addresses a phase-related feature that is time-shift invariant, and that expresses the relative phases of all harmonics with respect to that of the fundamental frequency. We identify the feature as Normalized Relative Delay (NRD) and we show that it is particularly useful to describe the holistic phase properties of voiced sounds produced by a human speaker, notably vowel sounds. We illustrate the NRD feature with real data that is obtained from five sustained vowels uttered by 20 female speakers and 17 male speakers. It is shown that not only NRD coefficients carry idiosyncratic information, but also their estimation is quite stable and robust for all harmonics encompassing, for most vowels, at least the first four formant frequencies. The average NRD model that is estimated using data pertaining to all speakers in our database is compared to that of the idealized Liljencrants-Fant (LF) and Rosenberg glottal models. We also present results on the phase effects of linear-phase FIR and IIR vocal tract filter models when a plausible source excitation is used that corresponds to the derivative of the L-F glottal flow model. These results suggest that the shape of NRD feature vectors is mainly determined by the glottal pulse and only marginally affected by either the group delay of the vocal tract filter model, or by the acoustic coupling between glottis and vocal tract structures. Copyright

2018

Traffic-Aware Multi-Tier Flying Network: Network Planning for Throughput Improvement

Autores
Almeida, EN; Campos, R; Ricardo, M;

Publicação
2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC)

Abstract
Despite recent advances, always-on broadband Internet connectivity is still not available in Temporary Crowded Events (TCEs). To solve this problem, this paper envisions a novel concept named Traffic-Aware Multi-Tier Flying Network (TMFN). A TMFN consists of a mobile and physically reconfigurable network of Flying Mesh Access Points (FMAPs) and Gateways, which is able to dynamically reconfigure its topology according to the users' traffic demands - characterized by the users' positions and offered traffic. To implement this concept, a novel traffic-aware Network Planning (NetPlan) algorithm is proposed, which dynamically determines the FMAPs' coordinates and Wi-Fi cell ranges according to the users' traffic demands, in order to improve the TMFN's aggregate throughput, without compromising the overall coverage. Simulation results obtained in scenarios typically observed in TCEs demonstrate improved Quality of Service metrics, specifically the mean throughput, thus validating the proposed NetPlan algorithm.

2018

Experimental evaluation of shore to unmanned surface vehicle Wi-Fi communications

Autores
Coelho, A; Lopes, M; Ferreira, B; Campos, R; Ricardo, M;

Publicação
2018 Wireless Days, WD 2018, Dubai, United Arab Emirates, April 3-5, 2018

Abstract
The blue economy potential is envisioned to increase the activity at the ocean worldwide in the coming years. To support these activities and the convergence to the Internet of Moving Things, Unmanned Surface Vehicles (USVs) are considered viable platforms to enable a large number of missions, including border surveillance and environmental monitoring. Typically, USVs use Wi-Fi for communicating with shore. However, in the literature, there is a lack of studies characterizing the shore-to-USV Wi-Fi link. This paper studies the influence of distance and USV orientation on the shore-to-USV link quality at the 2.4 GHz and 5.8 GHz Industrial, Scientific, and Medical (ISM) bands. The study is supported by experimental results, collected during sea trials. For the 2.4 GHz band, we conclude that neither the Two-Ray propagation model nor the Friis propagation model allow a good fit to the experimental measurements. On the other hand, for the 5 GHz band, the Friis propagation model fits the obtained experimental results. © 2018 IEEE.

2018

Improving the ns-3 TraceBasedPropagationLossModel to Support Multiple Access Wireless Scenarios

Autores
Fontes, H; Campos, R; Ricardo, M;

Publicação
WORKSHOP ON NETWORK SIMULATOR (NS)-3 (WNS3 2018)

Abstract
In wireless networking R&D we typically depend on experimentation to further evaluate a solution, as simulation is inherently a simplification of the real-world. However, experimentation is limited in aspects where simulation excels, such as repeatability and reproducibility. Real wireless experiments are hardly repeatable. Given the same input they can produce very different output results, since wireless communications are influenced by external random phenomena such as noise, interference, and multipath. Real experiments are also difficult to reproduce due to testbed operational constraints and availability. We have previously proposed the Trace-based Simulation (TS) approach, which uses the TraceBasedPropagationLossModel to successfully reproduce past experiments. Yet, in its current version, the TraceBasedPropagationLossModel only supports point-to-point scenarios. In this paper, we introduce a new version of the model that supports Multiple Access wireless scenarios. To validate the new version of the model, the network throughput was measured in a laboratory testbed. The experimental results were then compared to the network throughput achieved using the ns-3 trace-based simulation and a pure ns-3 simulation, confirming the TS approach is valid for multiple access scenarios too.

2018

Green Wireless Video Sensor Networks Using Low Power Out-of-Band Signalling

Autores
Sousa, F; Dias, J; Ribeiro, F; Campos, R; Ricardo, M;

Publicação
IEEE ACCESS

Abstract
The availability of low cost networked wireless devices and video cameras is enabling wireless video sensor networks (WVSNs), which can be used in scenarios such as healthcare, agriculture, smart cities, intelligent transportation systems, and surveillance. These scenarios typically require that each node sends a video stream to a server located in the cloud. The IEEE 802.11 is considered a suitable technology for transmitting video wirelessly, as it supports high data rates. However, when using a multi-hop topology to extend the IEEE 802.11 coverage, the IEEE 802.11-based WVSNs suffer from three problems: low network capacity, throughput unfairness, and energy inefficiency. To overcome these problems, we propose a holistic solution, named Green wiReless vidEo sENsor NEtworks uSing out-of-band Signalling (GREENNESS). GREENNESS combines a node polling mechanism with the use of out-of-band signaling over a low power radio to signal when a video sensor should switch ON and OFF its IEEE 802.11 interface, thus saving energy. The results obtained for random network topologies show that GREENNESS can achieve energy savings up to 92%, and improve network capacity and throughput fairness when compared to state of the art CSMA/CA-based WVSN solutions.

2018

Audiovisual Annotation in the Study of Physics

Autores
Marçal, J; Borges, MM; Carvalho, P; Viana, P;

Publicação
SIXTH INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ECOSYSTEMS FOR ENHANCING MULTICULTURALITY (TEEM'18)

Abstract
The support of video in the learning environment is nowadays used to many ends, either for demonstration, research or share. It is intended to reinforce the space before and after class and introduce a new dynamic and interaction in the classroom itself. Pedagogical innovation may be achieved by different approaches to motivate students and obtain better results. This paper presents a revision of the literature about the potential of using video annotation in the education context, specifically in the domain of Physics, using an open source annotation tool. The creation of audiovisual references, either for quick access to parts of organized video annotated content by the teacher, knowledge building or revision by and for other students is analyzed. This study is complemented with a testbed, showing the potential of using audiovisual annotated content, within a k-12 context. Students were invited to select video content, annotate, organize and publish the annotations, which could support the learning process in the domain of Physics. Results show that most of the aspects under analysis received a positive evaluation. The only exception relates to the capacity of the approach to motivated students to the study of Physics, as most of the students did not see this methodology as a motivating means.

  • 124
  • 324