2020
Autores
Galdi, C; Boyle, J; Chen, LL; Chiesa, V; Debiasi, L; Dugelay, JL; Ferryman, J; Grudzien, A; Kauba, C; Kirchgasser, S; Kowalski, M; Linortner, M; Maik, P; Michon, K; Patino, L; Prommegger, B; Sequeira, AF; Szklarski, L; Uhl, A;
Publicação
IET BIOMETRICS
Abstract
Pervasive and useR fOcused biomeTrics bordEr projeCT (PROTECT) is an EU project funded by the Horizon 2020 research and Innovation Programme. The main aim of PROTECT was to build an advanced biometric-based person identification system that works robustly across a range of border crossing types and that has strong user-centric features. This work presents the case study of the multibiometric verification system developed within PROTECT. The system has been developed to be suitable for different borders such as air, sea, and land borders. The system covers two use cases: the walk-through scenario, in which the traveller is on foot; the drive-through scenario, in which the traveller is in a vehicle. Each deployment includes a different set of biometric traits and this study illustrates how to evaluate such multibiometric system in accordance with international standards and, in particular, how to overcome practical problems that may be encountered when dealing with multibiometric evaluation, such as different score distributions and missing scores.
2020
Autores
Domingues, I; Sequeira, AF; Pinto, C; Rocha,;
Publicação
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION
Abstract
2020
Autores
Pereira, T; Tran, N; Gadhoumi, K; Pelter, MM; Do, DH; Lee, RJ; Colorado, R; Meisel, K; Hu, X;
Publicação
NPJ DIGITAL MEDICINE
Abstract
2020
Autores
Pereira, T; Gadhoumi, K; Ma, MH; Liu, XY; Xiao, R; Colorado, RA; Keenan, KJ; Meisel, K; Hu, X;
Publicação
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
2020
Autores
Wizinowich P.; Chin J.; Correia C.; Lu J.; Brown T.; Casey K.; Cetre S.; Delorme J.R.; Gers L.; Hunter L.; Lilley S.; Ragland S.; Surendran A.; Wetherell E.; Ghez A.; Do T.; Jones T.; Liu M.; Mawet D.; Max C.; Morris M.; Treu T.; Wright S.;
Publicação
Proceedings of SPIE - The International Society for Optical Engineering
Abstract
We present the status and plans for the Keck All sky Precision Adaptive optics (KAPA) program. KAPA includes four key science programs, an upgrade to the Keck I laser guide star (LGS) adaptive optics (AO) facility to improve image quality and sky coverage, AO telemetry based point spread function (PSF) estimates for all science exposures, and an educational component focused on broadening the participation of women and underrepresented groups in instrumentation. For the purpose of this conference we will focus on the AO facility upgrade which includes implementation of a new laser, wavefront sensor and real-time controller to support laser tomography, the laser tomography system itself, and modifications to an existing near-infrared tip-tilt sensor to support multiple natural guide star (NGS) and focus measurements.
2020
Autores
Chapman S.C.; Conod U.; Turri P.; Jackson K.; Lardiere O.; Sivanandam S.; Andersen D.; Correia C.; Lamb M.; Ross C.; Sivo G.; Veran J.P.;
Publicação
Proceedings of SPIE - The International Society for Optical Engineering
Abstract
The Gemini Infra-Red Multi-Object Spectrograph (GIRMOS) is a four-arm, Multi-Object Adaptive Optics (MOAO) IFU spectrograph being built for Gemini (commissioning in 2024). GIRMOS is being planned to interface with the new Gemini-North Adaptive Optics (GNAO) system, and is base lined with a requirement of 50% EE within a 0.100 spaxel at H-band. We present a design and forecast the error budget and performance of GIRMOS-MOAO working behind GNAO. The MOAO system will patrol the 20 field of regard of GNAO, utilizing closed loop GLAO or MCAO for lower order correction. GIRMOS MOAA will perform tomographic reconstruction of the turbulence using the GNAO WFS, and utilize order 16x16 actuator DMs operating in open loop to perform an additional correction from the Pseudo Open Loop (POL) slopes, achieving close to diffraction limited performance from the combined GNAO+MOAO correction. This high performance AO spectrograph will have the broadest impact in the study of the formation and evolution of galaxies, but will also have broad reach in fields such as star and planet formation within our Milky Way and supermassive black holes in nearby galaxies.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.