Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2020

A Framework for Fusion of T1-Weighted and Dynamic MRI Sequences

Autores
Teixeira, JF; Bessa, S; Gouveia, PF; Oliveira, HP;

Publicação
Image Analysis and Recognition - 17th International Conference, ICIAR 2020, Póvoa de Varzim, Portugal, June 24-26, 2020, Proceedings, Part II

Abstract
Breast cancer imaging research has seen continuous progress throughout the years. Innovative visualization tools and easier planning techniques are being developed. Image segmentation methodologies generally have best results when applied to specific types of exams or sequences, as their features enhance and expedite those approaches. Particular methods have more purchase with the segmentation of particular structures. This is the case with diverse breast structures and the respective lesions on MRI sequences, over T1w and Dyn. The present study presents a methodology to tackle an unapproached task. We aim to facilitate the volumetric alignment of data retrieved from T1w and Dyn sequences, leveraging breast surface segmentation and registration. The proposed method revolves around Canny edge detection and mending potential holes on the surface, in order to accurately reproduce the breast shape. The contour is refined with a Level-set approach and the surfaces are aligned together using a restriction of the Iterative Closest Point (ICP) method. This could easily be applied to other paired same-time, volumetric sequences. The process seems to have promising results as average two-dimensional contour distances are at sub-voxel resolution and visual results seem well within range for the valid transference of other segmented or annotated structures. © Springer Nature Switzerland AG 2020.

2020

THE ROLE OF RADIOGENOMICS IN EGFR AND KRAS MUTATION STATUS PREDICTION AMONG NON-SMALL CELL LUNG CANCER PATIENTS

Autores
Freitas, C; Pereira, T; Pinheiro, G; Dias, C; Hespanhol, V; Costa, JL; Cunha, A; Oliveira, H;

Publicação
CHEST

Abstract

2020

Pre-Training Autoencoder for Lung Nodule Malignancy Assessment Using CT Images

Autores
Silva, F; Pereira, T; Frade, J; Mendes, J; Freitas, C; Hespanhol, V; Luis Costa, JL; Cunha, A; Oliveira, HP;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Lung cancer late diagnosis has a large impact on the mortality rate numbers, leading to a very low five-year survival rate of 5%. This issue emphasises the importance of developing systems to support a diagnostic at earlier stages. Clinicians use Computed Tomography (CT) scans to assess the nodules and the likelihood of malignancy. Automatic solutions can help to make a faster and more accurate diagnosis, which is crucial for the early detection of lung cancer. Convolutional neural networks (CNN) based approaches have shown to provide a reliable feature extraction ability to detect the malignancy risk associated with pulmonary nodules. This type of approach requires a massive amount of data to model training, which usually represents a limitation in the biomedical field due to medical data privacy and security issues. Transfer learning (TL) methods have been widely explored in medical imaging applications, offering a solution to overcome problems related to the lack of training data publicly available. For the clinical annotations experts with a deep understanding of the complex physiological phenomena represented in the data are required, which represents a huge investment. In this direction, this work explored a TL method based on unsupervised learning achieved when training a Convolutional Autoencoder (CAE) using images in the same domain. For this, lung nodules from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) were extracted and used to train a CAE. Then, the encoder part was transferred, and the malignancy risk was assessed in a binary classification-benign and malignant lung nodules, achieving an Area Under the Curve (AUC) value of 0.936. To evaluate the reliability of this TL approach, the same architecture was trained from scratch and achieved an AUC value of 0.928. The results reported in this comparison suggested that the feature learning achieved when reconstructing the input with an encoder-decoder based architecture can be considered an useful knowledge that might allow overcoming labelling constraints.

2020

Personalized 3D Breast Cancer Models with Automatic Image Segmentation and Registration

Autores
BESSA, S; TEIXEIRA, JF; CARVALHO, PH; GOUVEIA, PF; OLIVEIRA, HP;

Publicação
Proceedings of 3DBODY.TECH 2020 - 11th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Online/Virtual, 17-18 November 2020

Abstract

2020

Domain Adaptation for Heart Rate Extraction in the Neonatal Intensive Care Unit

Autores
Malafaya, D; Domingues, S; Oliveira, HP;

Publicação
2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE

Abstract
Conventionally, vital sign monitoring for neonatal infants inside the Neonatal Intensive Care Unit is performed via probes affixed to their skin. However, such instruments may cause damage to the epidermis and increase the risk of infection as well as promote discomfort to the infant. As an alternative to traditional means of monitoring heart rate, remote Photoplethysmography techniques have been surging among the scientific community. These techniques have been vastly explored for adult subjects but not for neonatal infants, who would greatly benefit from such applications. This study aims at developing a regular consumer camera-based framework for continuous and contactless extraction of the heart rate in adult subjects in challenging conditions and investigating the tool's ability to adapt to a new domain which consists of newborn subjects and the real-world conditions of a Neonatal Intensive Care Unit.

2020

Modelling and simulation of electromagnetically induced transparency in hollow-core microstructured optical fibres

Autores
Rodrigues, SMG; Facao, M; Ines Carvalho, MI; Ferreira, MFS;

Publicação
OPTICS COMMUNICATIONS

Abstract
We study the electromagnetically induced transparency (EIT) phenomenon in a hollow-core fibre filled with rubidium gas. We analyse the impact of the guiding effect and of the temperature on the properties of the EIT phenomenon. The refractive index felt by the probe laser is found to vary due to the radial dependence of the fibre mode field at the pump frequency. Several results are presented for the transmission, dispersion, and group velocity of the probe field, considering both the free propagation regime and the guided propagation along the hollow-core fibre. We note that the EIT occurring in a waveguide has a great potential for practical applications since it can be controlled by adjusting the gas and the fibre properties.

  • 140
  • 381