Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2015

An FPGA Framework for Genetic Algorithms: Solving the Minimum Energy Broadcast Problem

Autores
dos Santos, PV; Alves, JC; Ferreira, JC;

Publicação
2015 EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD)

Abstract
Solving complex optimization problems with genetic algorithms (GAs) with custom computing architectures is a way to improve the execution time of this metaheuristic, which is known to consume considerable amounts of time to converge to final solutions. In this work, we present a scalable computing array architecture to accelerate the execution of cellular GAs (cGAs), a variant of genetic algorithms which can conveniently exploit the coarse- grain parallelism afforded by custom parallel processing. The proposed architecture targets Xilinx FPGAs and is used as an auxiliary processor of an embedded CPU (MicroBlaze). To handle different optimization problems, a high- level synthesis (HLS) design flow is proposed where the problem- dependent operations are specified in C++ and synthesised to custom hardware, thus requiring a minimum knowledge of digital design for FPGAs. The minimum energy broadcast (MEB) problem in wireless ad hoc networks is used as a case study. An existing software implementation of a GA to solve this problem is ported to the proposed computing array to demonstrate its effectiveness and the HLS- based design flow. Implementation results in a Virtex- 6 FPGA show significant speedups, while finding solutions with improved quality.

2015

Reconfigurable NC-OFDM Processor for 5G Communications

Autores
Ferreira, ML; Ferreira, JC;

Publicação
PROCEEDINGS IEEE/IFIP 13TH INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING 2015

Abstract
The proliferation of new wireless communication technologies and services led to a boost in the number of different available communication standards and spectrum usage. As the electromagnetic spectrum is a finite resource, concerns about its efficient management became an important aspect. Given this scenario, Cognitive Radio emerged as a solution for future wireless communication devices, by supporting multiple standards and improving spectrum utilization through opportunistic wireless access. The purpose of this research is to study and design a reconfigurable FPGA-based NC-OFDM baseband processor meeting the requirements of next generation Cognitive Radio devices in terms of multi-carrier, multi-standard communications and spectral agility in changing environments. The processor will be the core of a flexible NC-OFDM transceiver for future 5G communications with support for spectrum aggregation and run-time selection of modulation schemes and active sub-carriers. The goal is to achieve higher levels of system adaptability, upgradeability and efficiency, by employing dynamic partial reconfiguration of FPGAs.

2015

Transparent Acceleration of Program Execution Using Reconfigurable Hardware

Autores
Paulino, N; Ferreira, JC; Bispo, J; Cardoso, JMP;

Publicação
2015 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE)

Abstract
The acceleration of applications, running on a general purpose processor (GPP), by mapping parts of their execution to reconfigurable hardware is an approach which does not involve program's source code and still ensures program portability over different target reconfigurable fabrics. However, the problem is very challenging, as suitable sequences of GPP instructions need to be translated/mapped to hardware, possibly at runtime. Thus, all mapping steps, from compiler analysis and optimizations to hardware generation, need to be both efficient and fast. This paper introduces some of the most representative approaches for binary acceleration using reconfigurable hardware, and presents our binary acceleration approach and the latest results. Our approach extends a GPP with a Reconfigurable Processing Unit (RPU), both sharing the data memory. Repeating sequences of GPP instructions are migrated to an RPU composed of functional units and interconnect resources, and able to exploit instruction-level parallelism, e.g., via loop pipelining. Although we envision a fully dynamic system, currently the RPU resources are selected and organized offline using execution trace information. We present implementation prototypes of the system on a Spartan-6 FPGA with a MicroBlaze as GPP and the very encouraging results achieved with a number of benchmarks.

2015

A time synchronization circuit with sub-microsecond skew for multi-hop wired wearable networks

Autores
Derogarian, F; Ferreira, JC; Grade Tavares, VMG;

Publicação
MICROPROCESSORS AND MICROSYSTEMS

Abstract
This paper describes and evaluates a fully digital circuit for one-way master-to-slave, highly precise time synchronization in a low-power wearable system equipped with a set of sensor nodes. These sensors are connected to each other in a mesh topology, with conductive yarns used as one-wire bidirectional communication links. The circuit is designed to perform synchronization in the MAC layer, so that the deterministic part of the clock skew between nodes is kept constant and compensated with a single message exchange. In each sensor node, the synchronization circuit provides a programmable clock signal and a real-time counter for time stamping. Experimental results from a fabricated ASIC (in a CMOS 0.35 mu m technology) show that the circuit keeps the one-hop average clock skew below 4.6 ns and that the skew grows linearly as the hop distance to the reference node increases. The sub-microsecond average clock skew achieved by the proposed solution satisfies the requirements of many wearable sensor network applications.

2015

Acoustic Correlates of Compensatory Adjustments to the Glottic and Supraglottic Structures in Patients with Unilateral Vocal Fold Paralysis

Autores
Jesus, LMT; Martinez, J; Hall, A; Ferreira, A;

Publicação
BIOMED RESEARCH INTERNATIONAL

Abstract
The goal of this study was to analyse perceptually and acoustically the voices of patients with Unilateral Vocal Fold Paralysis (UVFP) and compare them to the voices of normal subjects. These voices were analysed perceptually with the GRBAS scale and acoustically using the following parameters: mean fundamental frequency (F0), standard-deviation of F0, jitter (ppq5), shimmer (apq11), mean harmonics-to-noise ratio (HNR), mean first (F1) and second (F2) formants frequency, and standard-deviation of F1 and F2 frequencies. Statistically significant differences were found in all of the perceptual parameters. Also the jitter, shimmer, HNR, standard-deviation of F0, and standard-deviation of the frequency of F2 were statistically different between groups, for both genders. In the male data differences were also found in F1 and F2 frequencies values and in the standard-deviation of the frequency of F1. This study allowed the documentation of the alterations resulting from UVFP and addressed the exploration of parameters with limited information for this pathology.

2015

Integrating Voice Evaluation: Correlation Between Acoustic and Audio-Perceptual Measures

Autores
Freitas, SV; Pestana, PM; Almeida, V; Ferreira, A;

Publicação
JOURNAL OF VOICE

Abstract
Objectives/Hypothesis. This article aims to establish correlations between acoustic and audio-perceptual measures using the GRBAS scale with respect to four different voice analysis software programs. Study Design. Exploratory, transversal. Methods. A total of 90 voice records were collected and analyzed with the Dr. Speech (Tiger Electronics, Seattle, WA), Multidimensional Voice Program (Kay Elemetrics, NJ, USA), PRAAT (University of Amsterdam, The Netherlands), and Voice Studio (Seegnal, Oporto, Portugal) software programs. The acoustic measures were correlated to the audio-perceptual parameters of the GRBAS and rated by 10 experts. Results. The predictive value of the acoustic measurements related to the audio-perceptual parameters exhibited magnitudes ranging from weak (R-a(2) = 0.17) to moderate (R-a(2) = 0.71). The parameter exhibiting the highest correlation magnitude is B (Breathiness), whereas the weaker correlation magnitudes were found to be for A (Asthenia) and S (Strain). The acoustic measures with stronger predictive values were local Shimmer, harmonics-to-noise ratio, APQ5 shimmer, and PPQ5 jitter, with different magnitudes for each one of the studied software programs. Conclusions. Some acoustic measures are pointed as significant predictors of GRBAS parameters, but they differ among software programs. B (Breathiness) was the parameter exhibiting the highest correlation magnitude.

  • 167
  • 324