Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2015

A new optical music recognition system based on combined neural network

Autores
Wen, CH; Rebelo, A; Zhang, J; Cardoso, J;

Publicação
PATTERN RECOGNITION LETTERS

Abstract
Optical music recognition (OMR) is an important tool to recognize a scanned page of music sheet automatically, which has been applied to preserving music scores. In this paper, we propose a new OMR system to recognize the music symbols without segmentation. We present a new classifier named combined neural network (CNN) that offers superior classification capability. We conduct tests on fifteen pages of music sheets, which are real and scanned images. The tests show that the proposed method constitutes an interesting contribution to OMR.

2015

A Novel Application of Universal Background Models for Periocular Recognition

Autores
Monteiro, JC; Cardoso, JS;

Publicação
BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, BIOSTEC 2015

Abstract
In recent years the focus of research in the fields of iris and face recognition has turned towards alternative traits to aid in the recognition process under less constrained acquisition scenarios. The present work assesses the potential of the periocular region as an alternative to both iris and face in such conditions. An automatic modeling of SIFT descriptors, using a GMM-based Universal Background Model method, is proposed. This framework is based on the Universal Background Model strategy, first proposed for speaker verification, extrapolated into an image-based application. Such approach allows a tight coupling between individual models and a robust likelihood-ratio decision step. The algorithm was tested on the UBIRIS. v2 and the MobBIO databases and presented state-of-the-art performance for a variety of experimental setups.

2015

Closed Shortest Path in the Original Coordinates with an Application to Breast Cancer

Autores
Cardoso, JS; Domingues, I; Oliveira, HP;

Publicação
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE

Abstract
Breast cancer is one of the most mediated malignant diseases, because of its high incidence and prevalence, but principally due to its physical and psychological invasiveness. The study of this disease using computer science tools resorts often to the image segmentation operation. Image segmentation, although having been extensively studied, is still an open problem. Shortest path algorithms are extensively used to tackle this problem. There are, however, applications where the starting and ending positions of the shortest path need to be constrained, defining a closed contour enclosing a previously detected seed. Mass and calcification segmentation in mammograms and areola segmentation in digital images are two particular examples of interest within the field of breast cancer research. Usually the closed contour computation is addressed by transforming the image into polar coordinates, where the closed contour is transformed into an open contour between two opposite margins. In this work, after illustrating some of the limitations of this approach, we show how to compute the closed contour in the original coordinate space. After defining a directed acyclic graph appropriate for this task, we address the main difficulty in operating in the original coordinate space. Since small paths collapsing in the seed point are naturally favored, we modulate the cost of the edges to counterbalance this bias. A thorough evaluation is conducted with datasets from the breast cancer field. The algorithm is shown to be fast and reliable and suffers no loss in resolution.

2015

Learning from evolving video streams in a multi-camera scenario

Autores
Khoshrou, S; Cardoso, JS; Teixeira, LF;

Publicação
MACHINE LEARNING

Abstract
Nowadays, video surveillance systems are taking the first steps toward automation, in order to ease the burden on human resources as well as to avoid human error. As the underlying data distribution and the number of concepts change over time, the conventional learning algorithms fail to provide reliable solutions for this setting. In this paper, we formalize a learning concept suitable for multi-camera video surveillance and propose a learning methodology adapted to that new paradigm. The proposed framework resorts to the universal background model to robustly learn individual object models from small samples and to more effectively detect novel classes. The individual models are incrementally updated in an ensemble-based approach, with older models being progressively forgotten. The framework is designed to detect and label new concepts automatically. The system is also designed to exploit active learning strategies, in order to interact wisely with operator, requesting assistance in the most ambiguous to classify observations. The experimental results obtained both on real and synthetic data sets verify the usefulness of the proposed approach.

2015

Periocular Recognition under Unconstrained Settings with Universal Background Models

Autores
Monteiro, JC; Cardoso, JS;

Publicação
BIOSIGNALS 2015 - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing, Lisbon, Portugal, 12-15 January, 2015.

Abstract
The rising challenges in the fields of iris and face recognition are leading to a renewed interest in the area. In recent years the focus of research has turned towards alternative traits to aid in the recognition process under less constrained image acquisition conditions. The present work assesses the potential of the periocular region as an alternative to both iris and face in such scenarios. An automatic modeling of SIFT descriptors, regardless of the number of detected keypoints and using a GMM-based Universal Background Model method, is proposed. This framework is based on the Universal Background Model strategy, first proposed for speaker verification, extrapolated into an image-based application. Such approach allows a tight coupling between individual models and a robust likelihood-ratio decision step. The algorithm was tested on the UBIRIS.v2 and the MobBIO databases and presented state-of-the-art performance for a variety of experimental setups.

2015

Video Analysis in Indoor Soccer using a Quadcopter

Autores
Ferreira, FT; Cardoso, JS; Oliveira, HP;

Publicação
ICPRAM 2015 - Proceedings of the International Conference on Pattern Recognition Applications and Methods, Volume 1, Lisbon, Portugal, 10-12 January, 2015.

Abstract
Automatic vision systems are widely used in sports competition to analyze individual and collective performance during the matches. However, the complex implementation based on multiple fixed cameras and the human intervention on the process makes this kind of systems expensive and not suitable for the big majority of the teams. In this paper we propose a low-cost, portable and flexible solution based on the use of Unmanned Air Vehicles to capture images from indoor soccer games. Since these vehicles suffer from vibrations and disturbances, the acquired video is very unstable, presenting a set of unusual problems in this type of applications. We propose a complete video-processing framework, including video stabilization, camera calibration, player detection, and team performance analysis. The results showed that camera calibration was able to correct automatically image-to-world homography; the player detection precision and recall was around 75%; and the high-level data interpretation showed a strong similarity with ground-truth derived results.

  • 173
  • 324