Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2023

Towards Concept-based Interpretability of Skin Lesion Diagnosis using Vision-Language Models

Autores
Patrício, C; Teixeira, LF; Neves, JC;

Publicação
CoRR

Abstract

2023

Evaluating Privacy on Synthetic Images Generated using GANs: Contributions of the VCMI Team to ImageCLEFmedical GANs 2023

Autores
Montenegro, H; Neto, PC; Patrício, C; Torto, IR; Gonçalves, T; Teixeira, LF;

Publicação
Working Notes of the Conference and Labs of the Evaluation Forum (CLEF 2023), Thessaloniki, Greece, September 18th to 21st, 2023.

Abstract
This paper presents the main contributions of the VCMI Team to the ImageCLEFmedical GANs 2023 task. This task aims to evaluate whether synthetic medical images generated using Generative Adversarial Networks (GANs) contain identifiable characteristics of the training data. We propose various approaches to classify a set of real images as having been used or not used in the training of the model that generated a set of synthetic images. We use similarity-based approaches to classify the real images based on their similarity to the generated ones. We develop autoencoders to classify the images through outlier detection techniques. Finally, we develop patch-based methods that operate on patches extracted from real and generated images to measure their similarity. On the development dataset, we attained an F1-score of 0.846 and an accuracy of 0.850 using an autoencoder-based method. On the test dataset, a similarity-based approach achieved the best results, with an F1-score of 0.801 and an accuracy of 0.810. The empirical results support the hypothesis that medical data generated using deep generative models trained without privacy constraints threatens the privacy of patients in the training data. © 2023 Copyright for this paper by its authors.

2023

Attention-Based Regularisation for Improved Generalisability in Medical Multi-Centre Data

Autores
Silva, D; Agrotis, G; Tan, RB; Teixeira, LF; Silva, W;

Publicação
International Conference on Machine Learning and Applications, ICMLA 2023, Jacksonville, FL, USA, December 15-17, 2023

Abstract
Deep Learning models are tremendously valuable in several prediction tasks, and their use in the medical field is spreading abruptly, especially in computer vision tasks, evaluating the content in X-rays, CTs or MRIs. These methods can save a significant amount of time for doctors in patient diagnostics and help in treatment planning. However, these models are significantly sensitive to confounders in the training data and generally suffer a performance hit when dealing with out-of-distribution data, affecting their reliability and scalability in different medical institutions. Deep Learning research on Medical datasets may overlook essential details regarding the image acquisition procedure and the preprocessing steps. This work proposes a data-centric approach, exploring the potential of attention maps as a regularisation technique to improve robustness and generalisation. We use image metadata and explore self-attention maps and contrastive learning to promote feature space invariance to image disturbance. Experiments were conducted using Chest X-ray datasets that are publicly available. Some datasets contained information about the windowing settings applied by the radiologist, acting as a source of variability. The proposed model was tested and outperformed the baseline in out-of-distribution data, serving as a proof of concept. © 2023 IEEE.

2023

Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models

Autores
Magalhaes, SC; dos Santos, FN; Machado, P; Moreira, AP; Dias, J;

Publicação
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

Abstract
Purpose: Visual perception enables robots to perceive the environment. Visual data is processed using computer vision algorithms that are usually time-expensive and require powerful devices to process the visual data in real-time, which is unfeasible for open-field robots with limited energy. This work benchmarks the performance of different heterogeneous platforms for object detection in real-time. This research benchmarks three architectures: embedded GPU-Graphical Processing Units (such as NVIDIA Jetson Nano 2 GB and 4 GB, and NVIDIA Jetson TX2), TPU-Tensor Processing Unit (such as Coral Dev Board TPU), and DPU-Deep Learning Processor Unit (such as in AMD-Xilinx ZCU104 Development Board, and AMD-Xilinx Kria KV260 Starter Kit). Methods: The authors used the RetinaNet ResNet-50 fine-tuned using the natural VineSet dataset. After the trained model was converted and compiled for target-specific hardware formats to improve the execution efficiency.Conclusions and Results: The platforms were assessed in terms of performance of the evaluation metrics and efficiency (time of inference). Graphical Processing Units (GPUs) were the slowest devices, running at 3 FPS to 5 FPS, and Field Programmable Gate Arrays (FPGAs) were the fastest devices, running at 14 FPS to 25 FPS. The efficiency of the Tensor Processing Unit (TPU) is irrelevant and similar to NVIDIA Jetson TX2. TPU and GPU are the most power-efficient, consuming about 5 W. The performance differences, in the evaluation metrics, across devices are irrelevant and have an F1 of about 70 % and mean Average Precision (mAP) of about 60 %.

2023

Special Issue on Novel Applications of Artificial Intelligence in Medicine and Health

Autores
Pereira, T; Cunha, A; Oliveira, HP;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Artificial Intelligence (AI) is one of the big hopes for the future of a positive revolution in the use of medical data to improve clinical routine and personalized medicine [...]

2023

Learning Models for Bone Marrow Edema Detection in Magnetic Resonance Imaging

Autores
Ribeiro, G; Pereira, T; Silva, F; Sousa, J; Carvalho, DC; Dias, SC; Oliveira, HP;

Publicação
APPLIED SCIENCES-BASEL

Abstract
Bone marrow edema (BME) is the term given to the abnormal fluid signal seen within the bone marrow on magnetic resonance imaging (MRI). It usually indicates the presence of underlying pathology and is associated with a myriad of conditions/causes. However, it can be misleading, as in some cases, it may be associated with normal changes in the bone, especially during the growth period of childhood, and objective methods for assessment are lacking. In this work, learning models for BME detection were developed. Transfer learning was used to overcome the size limitations of the dataset, and two different regions of interest (ROI) were defined and compared to evaluate their impact on the performance of the model: bone segmention and intensity mask. The best model was obtained for the high intensity masking technique, which achieved a balanced accuracy of 0.792 +/- 0.034. This study represents a comparison of different models and data regularization techniques for BME detection and showed promising results, even in the most difficult range of ages: children and adolescents. The application of machine learning methods will help to decrease the dependence on the clinicians, providing an initial stratification of the patients based on the probability of edema presence and supporting their decisions on the diagnosis.

  • 18
  • 322