Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2014

Clinical Test for Validation of a New Optical Probe for Hemodynamic Parameters Assessment

Autores
Pereira, T; Santos, I; Oliveira, T; Vaz, P; Almeida, V; Pereira, HC; Correia, C; Cardoso, J; Pereira, TS; Santos, H; Pereira, HC;

Publicação
BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIOSTEC 2013)

Abstract
The assessment of the cardiovascular system condition based on multiple parameters allows a more precise and accurate diagnosis of the heart and arterial tree condition. For this reason, the interest in non-invasive devices has presently increased in importance. In this work, an optical probe was tested in order to validate this technology for measuring multiple parameters such as Pulse Wave Velocity (PWV) or Augmentation Index (AIx), amongst others. The PWV measured by the optical probe was previously compared with the values obtained with the gold-standard system. Another analysis was performed in 131 young subjects to establish carotid PWV reference values as well as other hemodynamic parameters and to find correlations between these and the population characteristics. The results allowed us to conclude that this new technique is a reliable method to determine these parameters. The range of the obtained values for local PWV are in agreement with the values obtained by other studies, and significant correlations with age and smoking status were found. The AIx varied between -6.15 % and 11.46 % and exhibit a negative correlation with heart rate, and dP/dt(max) shows a significant decrease with age.

2014

Cardiovascular risk analysis by means of pulse morphology and clustering methodologies

Autores
Almeida, VG; Borba, J; Pereira, HC; Pereira, T; Correia, C; Pego, M; Cardoso, J;

Publicação
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE

Abstract
The purpose of this study was the development of a clustering methodology to deal with arterial pressure waveform (APW) parameters to be used in the cardiovascular risk assessment. One hundred sixteen subjects were monitored and divided into two groups. The first one (23 hypertensive subjects) was analyzed using APW and biochemical parameters, while the remaining 93 healthy subjects were only evaluated through APW parameters. The expectation maximization (EM) and k-means algorithms were used in the cluster analysis, and the risk scores (the Framingham Risk Score (FRS), the Systematic COronary Risk Evaluation (SCORE) project, the Assessing cardiovascular risk using Scottish Intercollegiate Guidelines Network (ASSIGN) and the PROspective Cardiovascular munster (PROCAM)), commonly used in clinical practice were selected to the cluster risk validation. The result from the clustering risk analysis showed a very significant correlation with ASSIGN (r = 0.582, p < 0.01) and a significant correlation with FRS (r = 0.458, p < 0.05). The results from the comparison of both groups also allowed to identify the cluster with higher cardiovascular risk in the healthy group. These results give new insights to explore this methodology in future scoring trials.

2014

Characterization of an Acoustic Based Device for Local Arterial Stiffness Assessment

Autores
Pereira, HC; Contente, M; Almeida, V; Pereira, T; Simoes, JB; Cardoso, J; Correia, C; Pereira, HC; Simoes, JB; Maldonado, J; Pereira, T;

Publicação
BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIOSTEC 2013)

Abstract
Arterial stiffness, recognized as an independent predictor of cardiovascular events, can be assessed non-invasively by regional and local methods. The present work proposes and describes a novel and low-cost device, based on a double-headed acoustic probe (AP), to assess local arterial stiffness, by means of pulse wave velocity (PWV) measurements. Local PWV is measured over the carotid artery and relies on the determination of the time delay between the signals acquired simultaneously by both acoustic sensors, placed at a fixed distance. The AP was characterized with dedicated test setups, in order to evaluate its performance concerning waveform analysis, repeatability, crosstalk effect and time resolution. Results show that AP signals are repeatable and crosstalk effect do not interfere with its time resolution, when the cross-correlation algorithm for time delay estimation is used. The AP's effectiveness in measuring higher PWV (14 m/s), with a relative error less than 5 %, when using two uncoupled APs, was also demonstrated. Finally, its clinical feasibility was investigated, in a set of 17 healthy subjects, in which local PWV and other hemodynamic parameters were measured. Carotid PWV yielded a mean value of 2.96 +/- 1.08 m/s that is in agreement with the values obtained in other reference studies.

2014

Assessment of the pulse wave variability for a new non-invasive device

Autores
Almeida, VG; Pereira, HC; Pereira, T; Ferreira, LR; Correia, C; Cardoso, J;

Publicação
IFMBE Proceedings

Abstract
The main motivation of this work was to provide a valid contribution for the assessment of the cardiovascular condition by the analysis of several Arterial Pressure Waveform (APW) parameters collected by a new non-invasive device. Three sets of recordings for the carotid pressure waveform at left and right carotid arteries were performed, under standardized conditions, in 20 volunteers by three trained operators. The mean of the inter-operator differences were higher for the right artery, comparatively to the left artery. In this case, an Augmentation Index (AIx) value of -2.31 ± 7.29 % and a Systolic Wave Transit Time (SWTT) value of -12.94 ± 31.46 ms were observed, which are higher than the left measurements, 0.94 ± 7.52 % and -2.96 ± 22.67 ms, respectively. Intra-operator differences were calculated for each of the three sets of measurements and showed good reproducibility. The pulse-by-pulse variability analysis gives very good markers for the Left Ventricular Ejection Time (LVET), Dicrotic Wave Amplitude (DWA), Reflection Wave Amplitude (RWA), Coefficient of Variation (CV) < 10 %, and satisfactory values for the AIx (CV< 30 %). The SWTT and Reflected Wave Transit Time (RWTT) also presented satisfactory results (10 %

2014

Submicron Surface Vibration Profiling Using Doppler Self-Mixing Techniques

Autores
Pereira, T; Sequeira, M; Vaz, P; Pereira, HC; Correia, C; Cardoso, J; Tomé,;

Publicação
Advances in Optics

Abstract
Doppler self-mixing laser probing techniques are often used for vibration measurement with very high accuracy. A novel optoelectronic probe solution is proposed, based on off-the-shelf components, with a direct reflection optical scheme for contactless characterization of the target’s movement. This probe was tested with two test bench apparatus that enhance its precision performance, with a linear actuator at low frequency (35?µm, 5–60?Hz), and its dynamics, with disc shaped transducers for small amplitude and high frequency (0.6?µm, 100–2500?Hz). The results, obtained from well-established signal processing methods for self-mixing Doppler signals, allowed the evaluation of vibration velocity and amplitudes with an average error of less than 10%. The impedance spectrum of piezoelectric (PZ) disc target revealed a maximum of impedance (around 1?kHz) for minimal Doppler shift. A bidimensional scan over the PZ disc surface allowed the categorization of the vibration mode (0,?1) and explained its deflection directions. The feasibility of a laser vibrometer based on self-mixing principles and supported by tailored electronics able to accurately measure submicron displacements was, thus, successfully demonstrated.

2014

Pulse pressure waveform estimation using distension profiling with contactless optical probe

Autores
Pereira, T; Santos, I; Oliveira, T; Vaz, P; Pereira, T; Santos, H; Pereira, H; Correia, C; Cardoso, J;

Publicação
MEDICAL ENGINEERING & PHYSICS

Abstract
The pulse pressure waveform has, for long, been known as a fundamental biomedical signal and its analysis is recognized as a non-invasive, simple, and resourceful technique for the assessment of arterial vessels condition observed in several diseases. In the current paper, waveforms from non-invasive optical probe that measures carotid artery distension profiles are compared with the waveforms of the pulse pressure acquired by intra-arterial catheter invasive measurement in the ascending aorta. Measurements were performed in a study population of 16 patients who had undergone cardiac catheterization. The hemodynamic parameters: area under the curve (AUC), the area during systole (AS) and the area during diastole (AD), their ratio (AD/AS) and the ejection time index (ETI), from invasive and non-invasive measurements were compared. The results show that the pressure waveforms obtained by the two methods are similar, with 13% of mean value of the root mean square error (RMSE). Moreover, the correlation coefficient demonstrates the strong correlation. The comparison between the AUCs allows the assessment of the differences between the phases of the cardiac cycle. In the systolic period the waveforms are almost equal, evidencing greatest clinical relevance during this period. Slight differences are found in diastole, probably due to the structural arterial differences. The optical probe has lower variability than the invasive system (13% vs 16%). This study validates the capability of acquiring the arterial pulse waveform with a non-invasive method, using a non-contact optical probe at the carotid site with residual differences from the aortic invasive measurements.

  • 198
  • 324