2025
Autores
Almeida, E; Pereira Rodrigues, P; Ferreira Santos, D;
Publicação
Studies in health technology and informatics
Abstract
Obstructive sleep apnea (OSA) is a sleep disorder marked by repeated episodes of airway obstruction, leading to apneas (complete blockage) or hypopneas (partial blockage) during sleep. The standard diagnostic metric, the apnea-hypopnea index (AHI), quantifies the number of these events per hour of sleep but has limitations, such as its dependence on manual interpretation and lack of attention to event duration, which can be clinically significant. To address these issues, this study developed an algorithm to detect respiratory events from nasal airflow signals and measure their duration, using data from 22 patients at St. Vincent's University Hospital, sourced from the PhysioNet dataset. Signal processing techniques, including filtering and envelope analysis, were applied to extract features, and apnea/hypopnea events were identified based on American Academy of Sleep Medicine (AASM) guidelines. Events were classified by duration into three groups: 10-20 seconds, 20-40 seconds, and over 40 seconds. Preliminary results showed detection accuracy of 60% for apnea and 93% for hypopnea events. The study also explored relations between event duration and demographic factors, such as age, gender, body mass index (BMI), and Epworth Sleepiness Scale (ESS) scores, to assess whether longer events were linked to greater severity. These findings suggest that incorporating event duration and automated detection into OSA diagnosis could improve accuracy and provide better insight into the condition, potentially leading to more personalized treatments.
2025
Autores
Teixeira, F; Costa, J; Amorim, P; Guimarães, N; Ferreira Santos, D;
Publicação
Studies in health technology and informatics
Abstract
This work introduces a web application for extracting, processing, and visualizing data from sleep studies reports. Using Optical Character Recognition (OCR) and Natural Language Processing (NLP), the pipeline extracts over 75 key data points from four types of sleep reports. The web application offers an intuitive interface to view individual reports' details and aggregate data from multiple reports. The pipeline demonstrated 100% accuracy in extracting targeted information from a test set of 40 reports, even in cases with missing data or formatting inconsistencies. The developed tool streamlines the analysis of OSA reports, reducing the need for technical expertise and enabling healthcare providers and researchers to utilize sleep study data efficiently. Future work aims to expand the dataset for more complex analyses and imputation techniques.
2025
Autores
Amorim, P; Ferreira-Santos, D; Moreira, E; Pimentel, AS; Drummond, M; Rodrigues, PP;
Publicação
Clinical and epidemiological respiratory sleep medicine
Abstract
2025
Autores
Carvalho, M; Amorim, P; Pereira Rodrigues, P; Ferreira-Santos, D;
Publicação
Clinical and epidemiological respiratory sleep medicine
Abstract
2025
Autores
Gomez-Pilar, J; Martín-Montero, A; Vaquerizo-Villar, F; Domínguez-Guerrero, M; Ferreira-Santos, D; Pereira-Rodrigues, P; Gozal, D; Hornero, R; Gutiérrez-Tobal, G;
Publicação
2025 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Abstract
2025
Autores
Biedebach, L; Ferreira-Santos, D; Stefanos, MA; Lindhagen, A; Pires, GN; Arnardóttir, ES; Islind, AS;
Publicação
SLEEP
Abstract
Study Objectives Unsupervised machine learning-an approach that identifies patterns and structures within data without relying on labels-has demonstrated remarkable success in various domains of sleep research. This underscores the broader utility of machine learning, suggesting that its capabilities extend beyond current applications and warrant further exploration for novel insights in sleep studies, focusing specifically on unsupervised machine learning.Methods This paper outlines a scoping review conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for scoping reviews. A comprehensive search covering various search terms focusing on the intersection between unsupervised machine learning and sleep led to 3960 publications. After screening all titles and abstracts with two independent reviewers, ultimately, 356 publications were included in the full-text review. The data extracted from the full texts included information about the machine learning methods and types of sleep data, as well as the study population.Results There has been a steep increase in the number of publications in this research area in the past 10 years. Clustering is the most commonly used method, but other methods are gaining popularity. Apart from classical polysomnography, data from wearable devices, nearables, video, audio, and medical imaging techniques have been used as input to unsupervised machine learning. The broad search allowed us to explore various applications within sleep research, ranging from the general population to populations with various sleep disorders.Conclusion The review mapped existing research on unsupervised learning in sleep research, identified gaps in the literature, and derived directions for future research. Statement of Significance Sleep is a transdisciplinary research field. With the rise of unsupervised machine learning and its emergence in sleep research, there is a pressing need to cultivate a mutual understanding across disciplinary boundaries to curate meaningful applications of unsupervised machine learning. This scoping review aims to serve as a foundation to facilitate collaboration across disciplines and ultimately contribute to the elevation of sleep research, by identifying novel ways of applying unsupervised machine learning.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.