Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2022

SurFABle: An Algorithm for Placing and Allocating Communications Resources in Slicing-aware Flying Access and Backhaul Networks

Autores
Coelho, A; Rodrigues, J; Fontes, H; Campos, R; Ricardo, M;

Publicação

Abstract
<p>Flying networks, composed of Unmanned Aerial Vehicles (UAVs) acting as mobile Base Stations and Access Points, have emerged to provide on-demand wireless connectivity, especially due to their positioning capability. Still, existing solutions are focused on improving aggregate network performance using a best-effort approach. This may compromise the use of multiple services with different performance requirements. Network slicing has emerged in 5G networks to address the problem, allowing to meet different Quality of Service (QoS) levels on top of a shared physical network infrastructure. However, Mobile Network Operators typically use fixed Base Stations to satisfy the requirements of different network slices, which may not be feasible due to limited resources and the dynamism of some scenarios.</p> <p>We propose an algorithm for enabling the joint placement and allocation of communications resources in Slicing-aware Flying Access and Backhaul networks – SurFABle. SurFABle allows the computation of the amount of communications resources needed, namely the number of UAVs acting as Flying Access Points and Flying Gateways, and their placement. The performance evaluation carried out by means of ns-3 simulations and an experimental testbed shows that SurFABle makes it possible to meet heterogeneous QoS levels of multiple network slices using the minimum number of UAVs.</p>

2022

SurFABle: An Algorithm for Placing and Allocating Communications Resources in Slicing-aware Flying Access and Backhaul Networks

Autores
Coelho, A; Rodrigues, J; Fontes, H; Campos, R; Ricardo, M;

Publicação

Abstract
<p>Flying networks, composed of Unmanned Aerial Vehicles (UAVs) acting as mobile Base Stations and Access Points, have emerged to provide on-demand wireless connectivity, especially due to their positioning capability. Still, existing solutions are focused on improving aggregate network performance using a best-effort approach. This may compromise the use of multiple services with different performance requirements. Network slicing has emerged in 5G networks to address the problem, allowing to meet different Quality of Service (QoS) levels on top of a shared physical network infrastructure. However, Mobile Network Operators typically use fixed Base Stations to satisfy the requirements of different network slices, which may not be feasible due to limited resources and the dynamism of some scenarios.</p> <p>We propose an algorithm for enabling the joint placement and allocation of communications resources in Slicing-aware Flying Access and Backhaul networks – SurFABle. SurFABle allows the computation of the amount of communications resources needed, namely the number of UAVs acting as Flying Access Points and Flying Gateways, and their placement. The performance evaluation carried out by means of ns-3 simulations and an experimental testbed shows that SurFABle makes it possible to meet heterogeneous QoS levels of multiple network slices using the minimum number of UAVs.</p>

2022

Joint Energy and Performance Aware Relay Positioning in Flying Networks

Autores
Rodrigues, H; Coelho, A; Ricardo, M; Campos, R;

Publicação

Abstract
<div>Unmanned Aerial Vehicles (UAVs) have emerged as suitable platforms for transporting and positioning communications nodes on demand, including Wi-Fi Access Points and cellular Base Stations. This paved the way for the deployment of flying networks capable of temporarily providing wireless connectivity and reinforcing coverage and capacity of existing networks. Several solutions have been proposed for the positioning of UAVs acting as Flying Access Points (FAPs). Yet, the positioning of Flying Communications Relays (FCRs) in charge of forwarding the traffic to/from the Internet has not received equal attention. In addition, state of the art works are focused on optimizing both the flying network performance and the energy-efficiency from the communications point of view, leaving aside a relevant component: the energy spent for the UAV propulsion.</div><div>We propose the Energy and Performance Aware relay Positioning (EPAP) algorithm. EPAP defines target performance-aware Signal-to-Noise Ratio (SNR) values for the wireless links established between the FCR UAV and the FAPs and, based on that, computes the trajectory to be completed by the FCR UAV so that the energy spent for the UAV propulsion is minimized. EPAP was evaluated in terms of both the flying network performance and the FCR UAV endurance, considering multiple networking scenarios. Simulation results show gains up to 25% in the FCR UAV endurance, while not compromising the Quality of Service offered by the flying network.</div>

2022

Symbolic Music Generation Conditioned on Continuous-Valued Emotions

Autores
Sulun, S; Davies, MEP; Viana, P;

Publicação
IEEE ACCESS

Abstract
In this paper we present a new approach for the generation of multi-instrument symbolic music driven by musical emotion. The principal novelty of our approach centres on conditioning a state-of-the-art transformer based on continuous-valued valence and arousal labels. In addition, we provide a new large-scale dataset of symbolic music paired with emotion labels in terms of valence and arousal. We evaluate our approach in a quantitative manner in two ways, first by measuring its note prediction accuracy, and second via a regression task in the valence-arousal plane. Our results demonstrate that our proposed approaches outperform conditioning using control tokens which is representative of the current state of the art.

2022

Enhancing Photography Management Through Automatically Extracted Metadata

Autores
Carvalho, P; Freitas, D; Machado, T; Viana, P;

Publicação
INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021

Abstract
The tremendous increase in photographs that are captured each day by common users has been favoured by the availability of high quality devices at accessible costs, such as smartphones and digital cameras. However, the quantity of captured photos raises new challenges regarding the access and management of image repositories. This paper describes a lightweight distributed framework intended to help overcome these problems. It uses image metadata in EXIF format, already widely added to images by digital acquisition devices, and automatic facial recognition to provide management and search functionalities. Moreover, a visualization functionality using a graph-based strategy was integrated, enabling an enhanced and more interactive navigation through search results and the corresponding relations.

2022

Automated Adequacy Assessment of Cervical Cytology Samples Using Deep Learning

Autores
Mosiichuk, V; Viana, P; Oliveira, T; Rosado, L;

Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022)

Abstract
Cervical cancer has been among the most common causes of cancer death in women. Screening tests such as liquid-based cytology (LBC) were responsible for a substantial decrease in mortality rates. Still, visual examination of cervical cells on microscopic slides is a time-consuming, ambiguous and challenging task, aggravated by inadequate sample quality (e.g. low cellularity or the presence of obscuring factors like blood or inflammation). While most works in the literature are focused on the automated detection of cervical lesions to support diagnosis, to the best of our knowledge, none of them address the automated assessment of sample adequacy, as established by The Bethesda System (TBS) guidelines. This work proposes a new methodology for automated adequacy assessment of cervical cytology samples. Since the most common reason for rejecting samples is the low count of the squamous nucleus, our approach relies on a deep learning object detection model for the detection and counting of different types of nuclei present in LBC samples. A dataset of 41 samples with a total of 42387 nuclei manually annotated by experienced specialists was used, and the best solution proposed achieved promising results for the automated detection of squamous nuclei (AP of 82.4%, Accuracy of 79.8%, Recall of 73.8% and Fl score of 81.5%). Additionally, by merging the developed automated cell counting approach with the adequacy criteria stated by the TBS guidelines, we validated our approach by correctly classifying an entire subset of 12 samples as adequate or inadequate.

  • 41
  • 328