Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2023

Computational Similarity of Portuguese Folk Melodies Using Hierarchical Reduction

Autores
Carvalho, N; Diogo, D; Bernardes, G;

Publicação
THE 10TH INTERNATIONAL CONFERENCE ON DIGITAL LIBRARIES FOR MUSICOLOGY, DLFM 2023

Abstract
We propose a method for computing the similarity of symbolically-encoded Portuguese folk melodies. The main novelty of our method is the use of a preprocessing melodic reduction at multiple hierarchies to filter the surface of folk melodies according to 1) pitch stability, 2) interval salience, 3) beat strength, 4) durational accents, and 5) the linear combination of all former criteria. Based on the salience of each note event per criteria, we create three melodic reductions with three different levels of note retention. We assess the degree to which six folk music similarity measures at multiple reduction hierarchies comply with collected ground truth from experts in Portuguese folk music. The results show that SIAM combined with 75th quantile reduction using the combined or durational accents best models the similarity for a corpus of Portuguese folk melodies by capturing approximately 84-90% of the variance observed in ground truth annotations.

2023

En train d'oublier: Toward affective virtual environments

Autores
Forero, J; Mendes, M; Bernardes, G;

Publicação
ACM International Conference Proceeding Series

Abstract
This study explores the development of intelligent affective virtual environments generated by bimodal emotion recognition techniques and multimodal feedback. A semantic and acoustic analysis predicts emotions conveyed by spoken language, fostering an expressive and transparent control structure. Textual contents and emotional predictions are mapped to virtual environments in real locations as audiovisual feedback. To demonstrate the application of this system, we developed a case study titled "En train d'oublier,"focusing on a train cemetery in Uyuni, Bolivia. The train cemetery holds historical significance as a site where abandoned trains symbolize the passage of time and the interaction between human activities and nature's reclamation. The space is transformed into an immersive and emotionally poetic experience through oral language and affective virtual environments that activate memories, as the system utilizes the transcribed text to synthesize images and modifies the musical output based on the predicted emotional states. The proposed bimodal emotion recognition techniques achieve 94% and 89% accuracy. The audiovisual mapping strategy allows for considering divergence in predictions generating an intended tension between the graphical and the musical representation. Using video and web art techniques, we experimented with the environments generated to create diverses poetic proposals. © 2023 ACM.

2023

TEC4SEA-Developing maritime technology for a sustainable blue economy

Autores
Monica, P; Cruz, N; Almeida, JM; Silva, A; Silva, E; Pinho, C; Almeida, C; Viegas, D; Pessoa, LM; Lima, AP; Martins, A; Zabel, F; Ferreira, BM; Dias, I; Campos, R; Araujo, J; Coelho, LC; Jorge, PS; Mendes, J;

Publicação
OCEANS 2023 - LIMERICK

Abstract
One way to mitigate the high costs of doing science or business at sea is to create technological infrastructures possessing all the skills and resources needed for successful maritime operations, and make those capabilities and skills available to the external entities requiring them. By doing so, the individual economic and scientific agents can be spared the enormous effort of creating and maintaining their own, particular set of equivalent capabilities, thus drastically lowering their initial operating costs. In addition to cost savings, operating based on fully-fledged, shared infrastructures not only allows the use of more advanced scientific equipment and highly skilled personnel, but it also enables the business teams (be it industry or research) to focus on their goals, rather than on equipment, logistics, and support. This paper will describe the TEC4SEA infrastructure, created precisely to operate as described. This infrastructure has been under implementation in the last few years, and has now entered its operational phase. This paper will describe it, present its current portfolio of services, and discuss the most relevant assets and facilities that have been recently acquired, so that the research and industrial communities requiring the use of such assets can fully evaluate their adequacy for their own purposes and projects.

2023

DURIUS: A Multimodal Underwater Communications Approach for Higher Performance and Lower Energy Consumption

Autores
Loureiro, JP; Teixeira, FB; Campos, R;

Publicação
2023 IEEE 9TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT

Abstract
The exploration of the ocean has got an increasing interest, including activities such as offshore wind farms and deep-sea mining. However, the ocean environment and the high cost of operations, namely for manned missions, have led to the development of Autonomous Underwater Vehicles (AUVs) and other sensing platforms. AUVs play a vital role in these environments, relying on communications systems to operate and exchange sensor data. Yet, reliable and energy-efficient broad-band wireless communications underwater remain an unsolved challenge, despite the recent advances in the field. We present a novel multimodal approach, named DURIUS, that considers the movement of the AUV to convey the sensor data and selects the most suitable underwater wireless communications technology - acoustic, optical or radio - according to the underwater context, targeting maximum performance and minimum energy consumption. Our analytical results show that DURIUS increases data throughput and reduces energy consumption when compared with the state of the art approaches.

2023

Airflow-Driven Triboelectric-Electromagnetic Hybridized Nanogenerator for Biomechanical Energy Harvesting

Autores
Alves, T; Rodrigues, C; Callaty, C; Duarte, C; Ventura, J;

Publicação
ADVANCED MATERIALS TECHNOLOGIES

Abstract
The increasing use of wearable electronics calls for sustainable energy solutions. Biomechanical energy harvesting appears as an attractive solution to replace the use of batteries in wearables, as the body generates sufficient power to drive small electronics. In particular, triboelectric nanogenerators (TENGs) have emerged as a promising approach due to its lightweight and high power density. In this work, a TENG is hybridized with an electromagnetic generator (EMG) to harvest energy from the foot strike. An enclosed radial-flow turbine is optimized and used to convert the foot-strike low-frequency linear movement into a higher-frequency rotational motion (by a factor of & AP;12). Besides increasing the motion frequency, the employed mechanism is physically robust and enables a continuous operation from irregular mechanical excitations. A single TENG unit operating in the freestanding mode generated an optimal power of 4.72 & mu;W and transferred a short-circuit charge of 2.3 nC. The TENG+EMG hybridization allows to power a digital pedometer even after the mechanical input stopped. Finally, the energy harvester is incorporated into a commercial shoe to power the same pedometer from foot walking. The obtained results validate the developed prototype ability to serve as a portable power source that can drive sensors and wearable electronics.

2023

Concept paper on novel radio frequency resistive switches

Autores
Kiazadeh A.; Deuermeier J.; Carlos E.; Martins R.; Matos S.; Cardoso F.M.; Pessoa L.M.;

Publicação
ACM International Conference Proceeding Series

Abstract
For reconfigurable radios where the signals can be easily routed from one band to another band, new radio frequency switches (RF) are a fundament. The main factor driving the power consumption of the reconfigurable intelligent system (RIS) is the need for an intermediate device with static power consumption to maintain a certain surface configuration state. Since power usage scales quadratically with the RIS area, there is a relevant interest in mitigating this drawback so that this technology can be applied to everyday objects without needing such a high intrinsic power consumption. Current switch technologies such as PIN diodes, and field effect transistors (FETs) are volatile electronic devices, resulting in high static power. In addition, dynamic power dissipation related to switching event is also considerable. Regarding energy efficiency, non-volatile radio frequency resistive switch (RFRS) concept may be better alternative solution due to several advantages: smaller area, zero-hold voltage, lower actuation bias for operation, short switching time, scalability and capable to be fabricated in the backend-of-line of standard CMOS process.

  • 44
  • 317