Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CTM

2022

Interpretability of Machine Intelligence in Medical Image Computing - 5th International Workshop, iMIMIC 2022, Held in Conjunction with MICCAI 2022, Singapore, Singapore, September 22, 2022, Proceedings

Autores
Reyes, M; Abreu, PH; Cardoso, JS;

Publicação
iMIMIC@MICCAI

Abstract

2022

SYN-MAD 2022: Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data

Autores
Huber, M; Boutros, F; Luu, AT; Raja, K; Ramachandra, R; Damer, N; Neto, PC; Goncalves, T; Sequeira, AF; Cardoso, JS; Tremoco, J; Lourenco, M; Serra, S; Cermeno, E; Ivanovska, M; Batagelj, B; Kronovsek, A; Peer, P; Struc, V;

Publicação
2022 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB)

Abstract
This paper presents a summary of the Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data (SYN-MAD) held at the 2022 International Joint Conference on Biometrics (IJCB 2022). The competition attracted a total of 12 participating teams, both from academia and industry and present in 11 different countries. In the end, seven valid submissions were submitted by the participating teams and evaluated by the organizers. The competition was held to present and attract solutions that deal with detecting face morphing attacks while protecting people's privacy for ethical and legal reasons. To ensure this, the training data was limited to synthetic data provided by the organizers. The submitted solutions presented innovations that led to outperforming the considered baseline in many experimental settings. The evaluation benchmark is now available at: https://github.com/marcohuber/SYN-MAD-2022.

2022

Computer-aided diagnosis through medical image retrieval in radiology

Autores
Silva, W; Goncalves, T; Harma, K; Schroder, E; Obmann, VC; Barroso, MC; Poellinger, A; Reyes, M; Cardoso, JS;

Publicação
SCIENTIFIC REPORTS

Abstract
Currently, radiologists face an excessive workload, which leads to high levels of fatigue, and consequently, to undesired diagnosis mistakes. Decision support systems can be used to prioritize and help radiologists making quicker decisions. In this sense, medical content-based image retrieval systems can be of extreme utility by providing well-curated similar examples. Nonetheless, most medical content-based image retrieval systems work by finding the most similar image, which is not equivalent to finding the most similar image in terms of disease and its severity. Here, we propose an interpretability-driven and an attention-driven medical image retrieval system. We conducted experiments in a large and publicly available dataset of chest radiographs with structured labels derived from free-text radiology reports (MIMIC-CXR-JPG). We evaluated the methods on two common conditions: pleural effusion and (potential) pneumonia. As ground-truth to perform the evaluation, query/test and catalogue images were classified and ordered by an experienced board-certified radiologist. For a profound and complete evaluation, additional radiologists also provided their rankings, which allowed us to infer inter-rater variability, and yield qualitative performance levels. Based on our ground-truth ranking, we also quantitatively evaluated the proposed approaches by computing the normalized Discounted Cumulative Gain (nDCG). We found that the Interpretability-guided approach outperforms the other state-of-the-art approaches and shows the best agreement with the most experienced radiologist. Furthermore, its performance lies within the observed inter-rater variability.

2022

Colon Nuclei Instance Segmentation using a Probabilistic Two-Stage Detector

Autores
Costa, P; Fu, Y; Nunes, J; Campilho, A; Cardoso, JS;

Publicação
CoRR

Abstract

2022

Explainable Biometrics in the Age of Deep Learning

Autores
Neto, PC; Gonçalves, T; Pinto, JR; Silva, W; Sequeira, AF; Ross, A; Cardoso, JS;

Publicação
CoRR

Abstract

2022

OCFR 2022: Competition on Occluded Face Recognition From Synthetically Generated Structure-Aware Occlusions

Autores
Neto, PC; Boutros, F; Pinto, JR; Damer, N; Sequeira, AF; Cardoso, JS; Bengherabi, M; Bousnat, A; Boucheta, S; Hebbadj, N; Erakin, ME; Demir, U; Ekenel, HK; Queiroz Vidal, PBd; Menotti, D;

Publicação
CoRR

Abstract

  • 55
  • 315