2024
Autores
Correia, PF; Coelho, A; Ricardo, M;
Publicação
CoRR
Abstract
2024
Autores
Shafafi, K; Ricardo, M; Campos, R;
Publicação
IEEE ACCESS
Abstract
Unmanned Aerial Vehicles (UAVs) are suited as cost-effective and adaptable platforms for carrying Wi-Fi Access Points (APs) and cellular Base Stations (BSs). Implementing aerial networks in disaster management scenarios and crowded areas can effectively enhance Quality of Service (QoS). Maintaining Line-of-Sight (LoS) in such environments, especially at higher frequencies, is crucial for ensuring reliable communication networks with high capacity, particularly in environments with obstacles. The main contribution of this paper is a traffic- and obstacle-aware UAV positioning algorithm named Reinforcement Learning-based Traffic and Obstacle-aware Positioning Algorithm (RLTOPA), for such environments. RLTOPA determines the optimal position of the UAV by considering the positions of ground users, the coordinates of obstacles, and the traffic demands of users. This positioning aims to maximize QoS in terms of throughput by ensuring optimal LoS between ground users and the UAV. The network performance of the proposed solution, characterized in terms of mean delay and throughput, was evaluated using the ns-3 simulator. The results show up to 95% improvement in aggregate throughput and 71% in delay without compromising fairness.
2024
Autores
Cojocaru, I; Coelho, A; Ricardo, M;
Publicação
2024 20TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS, WIMOB
Abstract
The Integrated Access and Backhaul (IAB) 5G network architecture, introduced in 3GPP Release 16, leverages a shared 5G spectrum for both access and backhaul networks. Due to the novelty of IAB, there is a lack of suitable implementations and performance evaluations. This paper addresses this gap by proposing EMU-IAB, a mobility emulator for private standalone 5G IAB networks. The proposed emulation environment comprises a 5G Core Network, an IAB-enabled Radio Access Network (RAN), leveraging the Open-RAN (O-RAN) architecture. The RAN includes a fixed IAB Donor, a mobile IAB Node, and multiple User Equipments (UEs). The mobility of the IAB Node is managed through EMU-IAB, which allows defining the path loss of emulated wireless channels. The validation of EMU-IAB was conducted under a realistic IAB node mobility scenario, addressing different traffic demand from the UEs.
2024
Autores
Pereira, B; Cunha, B; Viana, P; Lopes, M; Melo, ASC; Sousa, ASP;
Publicação
SENSORS
Abstract
Shoulder rehabilitation is a process that requires physical therapy sessions to recover the mobility of the affected limbs. However, these sessions are often limited by the availability and cost of specialized technicians, as well as the patient's travel to the session locations. This paper presents a novel smartphone-based approach using a pose estimation algorithm to evaluate the quality of the movements and provide feedback, allowing patients to perform autonomous recovery sessions. This paper reviews the state of the art in wearable devices and camera-based systems for human body detection and rehabilitation support and describes the system developed, which uses MediaPipe to extract the coordinates of 33 key points on the patient's body and compares them with reference videos made by professional physiotherapists using cosine similarity and dynamic time warping. This paper also presents a clinical study that uses QTM, an optoelectronic system for motion capture, to validate the methods used by the smartphone application. The results show that there are statistically significant differences between the three methods for different exercises, highlighting the importance of selecting an appropriate method for specific exercises. This paper discusses the implications and limitations of the findings and suggests directions for future research.
2024
Autores
Sulun, S; Viana, P; Davies, MEP;
Publicação
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
We introduce a novel method for movie genre classification, capitalizing on a diverse set of readily accessible pretrained models. These models extract high-level features related to visual scenery, objects, characters, text, speech, music, and audio effects. To intelligently fuse these pretrained features, we train small classifier models with low time and memory requirements. Employing the transformer model, our approach utilizes all video and audio frames of movie trailers without performing any temporal pooling, efficiently exploiting the correspondence between all elements, as opposed to the fixed and low number of frames typically used by traditional methods. Our approach fuses features originating from different tasks and modalities, with different dimensionalities, different temporal lengths, and complex dependencies as opposed to current approaches. Our method outperforms state-of-the-art movie genre classification models in terms of precision, recall, and mean average precision (mAP). To foster future research, we make the pretrained features for the entire MovieNet dataset, along with our genre classification code and the trained models, publicly available.
2024
Autores
Dias, J; Oliper, D; Soares, MR; Viana, P;
Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024
Abstract
This paper addresses the critical challenge of optimising beacon placement to support indoor location services and proposes a methodology to optimise the Base Station (BS) coverage keeping or even improving the system precision. The algorithm builds on top of the building schematics and takes into account several aspects that affect the radio link range (materials attenuation, Line of Sight (LOS) conditions, transmitted power and radio sensibility). The outcome is available as a coverage heat map. It is then compared with a standard layout following existing expert guidelines to evaluate the efficacy of the proposed layout.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.