Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Pedro Manuel Ribeiro

2018

TensorCast: Forecasting Time-Evolving Networks with Contextual Information

Autores
Araujo, M; Pinto Ribeiro, PM; Faloutsos, C;

Publicação
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden.

Abstract

2017

Network Motifs Detection Using Random Networks with Prescribed Subgraph Frequencies

Autores
Silva, MEP; Paredes, P; Ribeiro, P;

Publicação
COMPLEX NETWORKS VIII

Abstract
In order to detect network motifs we need to evaluate the exceptionality of subgraphs in a given network. This is usually done by comparing subgraph frequencies on both the original and an ensemble of random networks keeping certain structural properties. The classical null model implies preserving the degree sequence. In this paper our focus is on a richer model that approximately fixes the frequency of subgraphs of size K - 1 to compute motifs of size K. We propose a method for generating random graphs under this model, and we provide algorithms for its efficient computation. We show empirical results of our proposed methodology on neurobiological networks, showcasing its efficiency and its differences when comparing to the traditional null model.

2018

Graphlet-orbit Transitions (GoT): A fingerprint for temporal network comparison

Autores
Aparicio, D; Ribeiro, P; Silva, F;

Publicação
PLOS ONE

Abstract
Given a set of temporal networks, from different domains and with different sizes, how can we compare them? Can we identify evolutionary patterns that are both (i) characteristic and (ii) meaningful? We address these challenges by introducing a novel temporal and topological network fingerprint named Graphlet-orbit Transitions (GoT). We demonstrate that GoT provides very rich and interpretable network characterizations. Our work puts forward an extension of graphlets and uses the notion of orbits to encapsulate the roles of nodes in each subgraph. We build a transition matrix that keeps track of the temporal trajectory of nodes in terms of their orbits, therefore describing their evolution. We also introduce a metric (OTA) to compare two networks when considering these matrices. Our experiments show that networks representing similar systems have characteristic orbit transitions. GoT correctly groups synthetic networks pertaining to well-known graph models more accurately than competing static and dynamic state-of-the-art approaches by over 30%. Furthermore, our tests on real-world networks show that GoT produces highly interpretable results, which we use to provide insight into characteristic orbit transitions.

2018

Fast Streaming Small Graph Canonization

Autores
Paredes, P; Ribeiro, P;

Publicação
COMPLEX NETWORKS IX

Abstract
In this paper, we introduce the streaming graph canonization problem. Its goal is finding a canonical representation of a sequence of graphs in a stream. Our model of a stream fixes the graph's vertices and allows for fully dynamic edge changes, meaning it permits both addition and removal of edges. Our focus is on small graphs, since small graph isomorphism is an important primitive of many subgraph-based metrics, like motif analysis or frequent subgraph mining. We present an efficient data structure to approach this problem, namely a graph isomorphism discrete finite automaton and showcase its efficiency when compared to a non-streaming-aware method that simply recomputes the isomorphism information from scratch in each iteration.

2018

Hierarchical Expert Profiling Using Heterogeneous Information Networks

Autores
Silva, JMB; Ribeiro, P; Silva, FMA;

Publicação
Discovery Science - 21st International Conference, DS 2018, Limassol, Cyprus, October 29-31, 2018, Proceedings

Abstract
Linking an expert to his knowledge areas is still a challenging research problem. The task is usually divided into two steps: identifying the knowledge areas/topics in the text corpus and assign them to the experts. Common approaches for the expert profiling task are based on the Latent Dirichlet Allocation (LDA) algorithm. As a result, they require pre-defining the number of topics to be identified which is not ideal in most cases. Furthermore, LDA generates a list of independent topics without any kind of relationship between them. Expert profiles created using this kind of flat topic lists have been reported as highly redundant and many times either too specific or too general. In this paper we propose a methodology that addresses these limitations by creating hierarchical expert profiles, where the knowledge areas of a researcher are mapped along different granularity levels, from broad areas to more specific ones. For the purpose, we explore the rich structure and semantics of Heterogeneous Information Networks (HINs). Our strategy is divided into two parts. First, we introduce a novel algorithm that can fully use the rich content of an HIN to create a topical hierarchy, by discovering overlapping communities and ranking the nodes inside each community. We then present a strategy to map the knowledge areas of an expert along all the levels of the hierarchy, exploiting the information we have about the expert to obtain an hierarchical profile of topics. To test our proposed methodology, we used a computer science bibliographical dataset to create a star-schema HIN containing publications as star-nodes and authors, keywords and ISI fields as attribute-nodes. We use heterogeneous pointwise mutual information to demonstrate the quality and coherence of our created hierarchies. Furthermore, we use manually labelled data to serve as ground truth to evaluate our hierarchical expert profiles, showcasing how our strategy is capable of building accurate profiles. © 2018, Springer Nature Switzerland AG.

2019

Temporal network alignment via GoT-WAVE

Autores
Aparicio, D; Ribeiro, P; Milenkovic, T; Silva, F;

Publicação
BIOINFORMATICS

Abstract
Motivation: Network alignment (NA) finds conserved regions between two networks. NA methods optimize node conservation (NC) and edge conservation. Dynamic graphlet degree vectors are a state-of-the-art dynamic NC measure, used within the fastest and most accurate NA method for temporal networks: DynaWAVE. Here, we use graphlet-orbit transitions (GoTs), a different graphlet-based measure of temporal node similarity, as a new dynamic NC measure within DynaWAVE, resulting in GoT-WAVE. Results: On synthetic networks, GoT-WAVE improves DynaWAVE's accuracy by 30% and speed by 64%. On real networks, when optimizing only dynamic NC, the methods are complementary. Furthermore, only GoT-WAVE supports directed edges. Hence, GoT-WAVE is a promising new temporal NA algorithm, which efficiently optimizes dynamic NC. We provide a user-friendly user interface and source code for GoT-WAVE.

  • 4
  • 12