Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Rui Esteves Araujo

2022

Improvement of Steady State Performance of Voltage Control in Switched Reluctance Generator: Experimental Validation

Autores
Touati, Z; Pereira, M; Araujo, RE; Khedher, A;

Publicação
MACHINES

Abstract
This paper presents a voltage control approach to a Switched Reluctance Generator (SRG) using a Proportional Integral (PI) controller. The principle of operation is described and the considerations in the design of controller are discussed. A current loop transfer function of an SRG with power converter has been systematically derived in order to obtain a small-signal model for the generator. The generated voltage is controlled by manipulation of the setpoint of the current control of the generator. The entire voltage loop controller and current control have been simulated and tested with a 250 W SRG prototype. The control law of the control system was implemented on a digital signal processor (TMS320F28379D). To verify the feasibility of the proposed voltage control, the performances are evaluated by numerical simulations and experimental tests with an 8/6 SRG for different rotational speeds and resistive loads. Experimental results demonstrate that the DC output voltage from SRG can be controlled well using a simple linear controller.

2020

Model Predictive Current Control of Switched Reluctance Motor Drive: An Initial Study

Autores
Pereira, M; Araújo, RE;

Publicação
Technological Innovation for Life Improvement - 11th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2020, Costa de Caparica, Portugal, July 1-3, 2020, Proceedings

Abstract
A considerable amount of research within the last few decades has been focusing on controllers for switched reluctance motor drives and how they affect the torque ripple. Despite all its potentials, there are still major concerns and obstacles to overcome concerning the dependency of the magnetic characteristic of the switched reluctance motor. This work targets these concerns by proposing an initial study of the fundamentals of a drive scheme using a finite set model predictive control for a switched reluctance motor through an asymmetric bridge converter. The implementation of this scheme is the main contribution of this paper. The method uses the dynamic model of the motor to estimate the future behavior of the current for each converter state. A cost function then evaluates which switching state minimizes the current error and applies it to the motor. Some simulation results illustrate the technique. Simulation results show the good performance of the method with fast and accurate transient response. © IFIP International Federation for Information Processing 2020.

2022

Integration of Switched Reluctance Generator in a Wind Energy Conversion System: An Overview of the State of the Art and Challenges

Autores
Touati, Z; Pereira, M; Araujo, RE; Khedher, A;

Publicação
ENERGIES

Abstract
This paper presents a technical overview for Switched Reluctance Generators (SRG) in Wind Energy Conversion System (WECS) applications. Several topics are discussed, such as the main structures and topologies for SRG converters in WECS, and the optimization control methods to improve the operational efficiency of SRGs in wind power generation systems. A comprehensive overview including the main characteristics of each SRG converter topology and control techniques were discussed. The analysis presented can also serve as a foundation for more advanced versions of SRG control techniques, providing a necessary basis to spur more and, above all, motivate the younger researchers to study magnetless electric machines, and pave the way for higher growth of wind generators based on SRGs.

2022

Learning-Based Control for Hybrid Battery Management Systems

Autores
Mirwald, J; de Castro, R; Brembeck, J; Ultsch, J; Araujo, RE;

Publicação
Springer Optimization and Its Applications - Intelligent Control and Smart Energy Management

Abstract

2022

An Analytic Hierarchy Process for Selecting Battery Equalization Methods

Autores
Dias, BMD; da Silva, CT; Araujo, RE; de Castro, R; Pellini, EL; Pinto, C; Lagana, AAM;

Publicação
ENERGIES

Abstract
Batteries have been the predominant energy storage system used in electric vehicles. Battery packs have a large number of cells that develop charge, thermal, and capacity imbalances over time, limiting the power, range, and lifetime. Electronic battery management and state of charge (SoC) equalization methods are necessary to mitigate such imbalances. Today, it is possible to find a wide range of battery equalization methods in the literature, but how to decide which of these methods should be applied in practice? This paper compares 24 SoC equalization circuits that are typically found in automotive applications. We employ an analytic hierarchy process (AHP) approach to rank these equalization circuits according to multiple decision criteria (energy efficiency, equalization speed, implementation and control simplicity, hardware size, and total price). We also prepared a survey to collect design preferences from multiple battery balancing experts from around the world in order to better understand the relative importance of different criteria. The obtained results confirm that automotive engineers continue to favor passive balancing methods because of their low price, small PCB size, and implementation simplicity-despite the energy efficiency benefits of active balancing.

2022

Comparative Study of Discrete PI and PR Controller Implemented in SRG for Wind Energy Application: Theory and Experimentation

Autores
Touati, Z; Pereira, M; Araujo, RE; Khedher, A;

Publicação
ELECTRONICS

Abstract
The Switched Reluctance Generator (SRG) has been widely studied for Wind Energy Conversion Systems (WECS). However, a major drawback of the SRG system adopting the conventional control is the slow response of the DC link voltage controller. In this paper, a Proportional Resonant (PR) control strategy is proposed to control the output voltage of the SRG system to improve the fast response. The SRG model has a high non-linearity, which makes the design of controllers a difficult task. For this reason, the important practical engineering aspect of this work is the role played by the SRG model linearization in testing the sensitivity of the PR controller performance to specific parameter changes. The characteristics of steady-state behaviors of the SRG-based WECS under different control approaches are simulated and compared. The controller is implemented on a digital signal processor (TMS320F28379D). The experimental results are carried out using a 250 W 8/6 SRG prototype to assess the performance of the proposed control compared with the traditional Proportional Integral (PI) control strategy. The experimental results show that the PR control enhances the steady-state performance of the SR power generation system in WECS. Compared to PI control, the rise and settling times are reduced by 45% and 43%, respectively, without an overshoot.

  • 14
  • 26