2012
Autores
Jorge Morais, AJ; Oliveira, E; Jorge, AM;
Publicação
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE
Abstract
The large amount of pages in Websites is a problem for users who waste time looking for the information they really want. Knowledge about users' previous visits may provide patterns that allow the customization of the Website. This concept is known as Adaptive Website: a Website that adapts itself for the purpose of improving the user's experience. Some Web Mining algorithms have been proposed for adapting a Website. In this paper, a recommender system using agents with two different algorithms (associative rules and collaborative filtering) is described. Both algorithms are incremental and work with binary data. Results show that this multi-agent approach combining different algorithms is capable of improving user's satisfaction.
2023
Autores
Neto, J; Morais, AJ; Gonçalves, R; Coelho, AL;
Publicação
BUILDINGS
Abstract
Fires in large buildings can have tragic consequences, including the loss of human lives. Despite the advancements in building construction and fire safety technologies, the unpredictable nature of fires, particularly in large buildings, remains an enormous challenge. Acknowledging the paramount importance of prioritising human safety, the academic community has been focusing consistently on enhancing the efficiency of building evacuation. While previous studies have integrated evacuation simulation models, aiding in aspects such as the design of evacuation routes and emergency signalling, modelling human behaviour during a fire emergency remains challenging due to cognitive complexities. Moreover, behavioural differences from country to country add another layer of complexity, hindering the creation of a universal behaviour model. Instead of centring on modelling the occupant behaviour, this paper proposes an innovative approach aimed at enhancing the occupants' behaviour predictability by providing real-time information to the occupants regarding the most suitable evacuation routes. The proposed models use a building's environmental conditions to generate contextual information, aiding in developing solutions to make the occupants' behaviour more predictable by providing them with real-time information on the most appropriate and efficient evacuation routes at each moment, guiding the occupants to safety during a fire emergency. The models were incorporated into a context-aware recommender system for testing purposes. The simulation results indicate that such a system, coupled with hazard and congestion models, positively influences the occupants' behaviour, fostering faster adaptation to the environmental conditions and ultimately enhancing the efficiency of building evacuations.
2024
Autores
Alves, A; Pereira, J; Khanal, S; Morais, AJ; Filipe, V;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023
Abstract
Modern agriculture faces important challenges for feeding a fast-growing planet's population in a sustainable way. One of the most important challenges faced by agriculture is the increasing destruction caused by pests to important crops. It is very important to control and manage pests in order to reduce the losses they cause. However, pest detection and monitoring are very resources consuming tasks. The recent development of computer vision-based technology has made it possible to automatize pest detection efficiently. In Mediterranean olive groves, the olive fly (Bactrocera oleae Rossi) is considered the key-pest of the crop. This paper presents olive fly detection using the lightweight YOLO-based model for versions 7 and 8, respectively, YOLOv7-tiny and YOLOv8n. The proposed object detection models were trained, validated, and tested using two different image datasets collected in various locations of Portugal and Greece. The images are constituted by sticky yellow trap photos and by McPhail trap photos with olive fly exemplars. The performance of the models was evaluated using precision, recall, and mAP.95. The YOLOV7-tiny model best performance is 88.3% of precision, 85% of Recall, 90% of mAP.50, and 53% of mAP.95. The YOLOV8n model best performance is 85% of precision, 85% of Recall, 90% mAP.50, and 55% of mAP.50 YOLO8n model achieved worst results than YOLOv7-tiny for a dataset without negative images (images without olive fly exemplars). Aiming at installing an experimental prototype in the olive grove, the YOLOv8n model was implemented in a Ubuntu Server 23.04 Raspberry PI 3 microcomputer.
2024
Autores
de Azambuja, RX; Morais, AJ; Filipe, V;
Publicação
Human-Centric Intelligent Systems
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.