Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HASLab

2023

An Experimental Evaluation of Tools for Grading Concurrent Programming Exercises

Autores
Barros, M; Ramos, M; Gomes, A; Cunha, A; Pereira, J; Almeida, PS;

Publicação
Formal Techniques for Distributed Objects, Components, and Systems - 43rd IFIP WG 6.1 International Conference, FORTE 2023, Held as Part of the 18th International Federated Conference on Distributed Computing Techniques, DisCoTec 2023, Lisbon, Portugal, June 19-23, 2023, Proceedings

Abstract

2023

TiQuE: Improving the Transactional Performance of Analytical Systems for True HybridWorkloads

Autores
Faria, N; Pereira, J; Alonso, AN; Vilaca, R; Koning, Y; Nes, N;

Publicação
PROCEEDINGS OF THE VLDB ENDOWMENT

Abstract
Transactions have been a key issue in database management for a long time and there are a plethora of architectures and algorithms to support and implement them. The current state-of-the-art is focused on storage management and is tightly coupled with its design, leading, for instance, to the need for completely new engines to support new features such as Hybrid Transactional Analytical Processing (HTAP). We address this challenge with a proposal to implement transactional logic in a query language such as SQL. This means that our approach can be layered on existing analytical systems but that the retrieval of a transactional snapshot and the validation of update transactions runs in the server and can take advantage of advanced query execution capabilities of an optimizing query engine. We demonstrate our proposal, TiQuE, on MonetDB and obtain an average 500x improvement in transactional throughput while retaining good performance on analytical queries, making it competitive with the state-of-the-art HTAP systems.

2023

PADLL: Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control

Autores
Macedo, R; Miranda, M; Tanimura, Y; Haga, J; Ruhela, A; Harrell, SL; Evans, RT; Pereira, J; Paulo, J;

Publicação
CoRR

Abstract

2023

Taming Metadata-intensive HPC Jobs Through Dynamic, Application-agnostic QoS Control

Autores
Macedo, R; Miranda, M; Tanimura, Y; Haga, J; Ruhela, A; Harrell, SL; Evans, RT; Pereira, J; Paulo, J;

Publicação
2023 IEEE/ACM 23RD INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING, CCGRID

Abstract
Modern I/O applications that run on HPC infrastructures are increasingly becoming read and metadata intensive. However, having multiple applications submitting large amounts of metadata operations can easily saturate the shared parallel file system's metadata resources, leading to overall performance degradation and I/O unfairness. We present PADLL, an application and file system agnostic storage middleware that enables QoS control of data and metadata workflows in HPC storage systems. It adopts ideas from Software-Defined Storage, building data plane stages that mediate and rate limit POSIX requests submitted to the shared file system, and a control plane that holistically coordinates how all I/O workflows are handled. We demonstrate its performance and feasibility under multiple QoS policies using synthetic benchmarks, real-world applications, and traces collected from a production file system. Results show that PADLL can enforce complex storage QoS policies over concurrent metadata-aggressive jobs, ensuring fairness and prioritization.

2023

Towards MRAM Byte-Addressable Persistent Memory in Edge Database Systems

Autores
Ferreira, LM; Coelho, F; Pereira, JO;

Publicação
Joint Proceedings of Workshops at the 49th International Conference on Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September 1, 2023.

Abstract
There is a growing demand for persistent data in IoT, edge and similar resource-constrained devices. However, standard FLASH memory-based solutions present performance, energy, and reliability limitations in these applications. We propose MRAM persistent memory as an alternative to FLASH based storage. Preliminary experimental results show that its performance, power consumption, and reliability in typical database workloads is competitive for resource-constrained devices. This opens up new opportunities, as well as challenges, for small-scale database systems. MRAM is tested for its raw performance and applicability to key-value and relational database systems on resource-constrained devices. Improvements of as much as three orders of magnitude in write performance for key-value systems were observed in comparison to an alternative NAND FLASH based device. © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

2023

Paraconsistent Transition Systems

Autores
Cruz, A; Madeira, A; Barbosa, LS;

Publicação
ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE

Abstract
Often in Software Engineering a modelling formalism has to support scenarios of inconsistency in which several requirements either reinforce or contradict each other. Paraconsistent transition systems are proposed in this paper as one such formalism: states evolve through two accessibility relations capturing weighted evidence of a transition or its absence, respectively. Their weights come from a specific residuated lattice. A category of these systems, and the corresponding algebra, is defined providing a formal setting to model different application scenarios. One of them, dealing with the effect of quantum decoherence in quantum programs, is used for illustration purposes.

  • 10
  • 247