Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Cristina Ribeiro

2016

Predicting the comprehension of health web documents using characteristics of documents and users

Autores
Oroszlanyova, M; Lopes, CT; Nunes, S; Ribeiro, C;

Publicação
INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS/INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT/INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES, CENTERIS/PROJMAN / HCIST 2016

Abstract
The Web is frequently used as a way to access health information. In the health domain, the terminology can be very specific, frequently assuming a medico-scientific character. This can be a barrier to users who may be unable to understand the retrieved documents. Therefore, it would be useful to automatically assess how well a certain document will be understood by a certain user. In the present work, we analyse whether it is possible to predict the comprehension of documents using document features together with user features, and how well this can be achieved. We use an existing dataset, composed by health documents on the Web and their assessment in terms of comprehension by users, to build two multivariate prediction models for comprehension. Our best model showed very good results, with 96.51% accuracy. Our findings suggest features that can be considered by search engines to estimate comprehension. We found that user characteristics related to web and health search habits, such as the success of the users with Web search and the frequency of the users' health search, are some of the most influential user variables. The promising results obtained with this dataset with manual comprehension assessment will lead us to explore the automatic assessment of document and user characteristics. (C) 2016 The Authors. Published by Elsevier B.V.

2015

Summarization of changes in dynamic text collections using Latent Dirichlet Allocation model

Autores
Kar, M; Nunes, S; Ribeiro, C;

Publicação
INFORMATION PROCESSING & MANAGEMENT

Abstract
In the area of Information Retrieval, the task of automatic text summarization usually assumes a static underlying collection of documents, disregarding the temporal dimension of each document. However, in real world settings, collections and individual documents rarely stay unchanged over time. The World Wide Web is a prime example of a collection where information changes both frequently and significantly over time, with documents being added, modified or just deleted at different times. In this context, previous work addressing the summarization of web documents has simply discarded the dynamic nature of the web, considering only the latest published version of each individual document. This paper proposes and addresses a new challenge - the automatic summarization of changes in dynamic text collections. In standard text summarization, retrieval techniques present a summary to the user by capturing the major points expressed in the most recent version of an entire document in a condensed form. In this new task, the goal is to obtain a summary that describes the most significant changes made to a document during a given period. In other words, the idea is to have a summary of the revisions made to a document over a specific period of time. This paper proposes different approaches to generate summaries using extractive summarization techniques. First, individual terms are scored and then this information is used to rank and select sentences to produce the final summary. A system based on Latent Dirichlet Allocation model (LDA) is used to find the hidden topic structures of changes. The purpose of using the LDA model is to identify separate topics where the changed terms from each topic are likely to carry at least one significant change. The different approaches are then compared with the previous work in this area. A collection of articles from Wikipedia, including their revision history, is used to evaluate the proposed system. For each article, a temporal interval and a reference summary from the article's content are selected manually. The articles and intervals in which a significant event occurred are carefully selected. The summaries produced by each of the approaches are evaluated comparatively to the manual summaries using ROUGE metrics. It is observed that the approach using the LDA model outperforms all the other approaches. Statistical tests reveal that the differences in ROUGE scores for the LDA-based approach is statistically significant at 99% over baseline.

2016

Voice recognition in the LabTablet electronic laboratory notebook

Autores
Ventura, S; Amorim, RC; Silva, JRd; Ribeiro, C;

Publicação
Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering, C3S2E '16, Porto, Portugal, July 20-22, 2016

Abstract
Research institutions are considering data repositories to manage their outputs and ensure their visibility. In many domains, purpose-built tools can help collect data and metadata as they are created. LabTablet is such a tool, designed to provide the functions of a laboratory notebook, and being able to accompany users in either experimental sessions or field trips. In these contexts, the interaction with the device can be problematic, so we experimented with a speech recognition extension for two purposes: to provide commands, such as requesting readings from the built-in sensors, and to record observations such as a dictated note in a field trip. Copyright 2016 ACM.

2014

Creating lightweight ontologies for dataset description Practical applications in a cross-domain research data management workflow

Autores
Castro, JA; da Silva, JR; Ribeiro, C;

Publicação
2014 IEEE/ACM JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL)

Abstract
The description of data is a central task in research data management. Describing datasets requires deep knowledge of both the data and the data creation process to ensure adequate capture of their meaning and context. Metadata schemas are usually followed in resource description to enforce comprehensiveness and interoperability, but they can be hard to understand and adopt by researchers. We propose to address data description using ontologies, which can evolve easily, express semantics at different granularity levels and be directly used in system development. Considering that existing ontologies are often hard to use in a cross domain research data management environment, we present an approach for creating lightweight ontologies to describe research data. We illustrate our process with two ontologies, and then use them as configuration parameters for Dendro, a software platform for research data management currently being developed at the University of Porto.

2014

Dendro: Collaborative Research Data Management Built on Linked Open Data

Autores
da Silva, JR; Castro, JA; Ribeiro, C; Lopes, JC;

Publicação
SEMANTIC WEB: ESWC 2014 SATELLITE EVENTS

Abstract
Research datasets in the so-called "long-tail of science" are easily lost after their primary use. Support for preservation, if available, is hard to fit in the research agenda. Our previous work has provided evidence that dataset creators are motivated to spend time on data description, especially if this also facilitates data exchange within a group or a project. This activity should take place early in the data generation process, when it can be regarded as an actual part of data creation. We present the first prototype of the Dendro platform, designed to help researchers use concepts from domain-specific ontologies to collaboratively describe and share datasets within their groups. Unlike existing solutions, ontologies are used at the core of the data storage and querying layer, enabling users to establish meaningful domain-specific links between data, for any domain. The platform is currently being tested with research groups from the University of Porto.

2017

Effects of Language and Terminology of Query Suggestions on Medical Accuracy Considering Different User Characteristics

Autores
Lopes, CT; Paiva, D; Ribeiro, C;

Publicação
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY

Abstract
Searching for health information is one of the most popular activities on the web. In this domain, users often misspell or lack knowledge of the proper medical terms to use in queries. To overcome these difficulties and attempt to retrieve higher-quality content, we developed a query suggestion system that provides alternative queries combining the Portuguese or English language with lay or medico-scientific terminology. Here we evaluate this system's impact on the medical accuracy of the knowledge acquired during the search. Evaluation shows that simply providing these suggestions contributes to reduce the quantity of incorrect content. This indicates that even when suggestions are not clicked, they are useful either for subsequent queries' formulation or for interpreting search results. Clicking on suggestions, regardless of type, leads to answers with more correct content. An analysis by type of suggestion and user characteristics showed that the benefits of certain languages and terminologies are more perceptible in users with certain levels of English proficiency and health literacy. This suggests a personalization of this suggestion system toward these characteristics. Overall, the effect of language is more preponderant than the effect of terminology. Clicks on English suggestions are clearly preferable to clicks on Portuguese ones.

  • 2
  • 22