Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HASLab

2023

Towards an IDE for Scientific Computational Experiments

Autores
Costa, L; Barbosa, S; Cunha, J;

Publicação
2023 IEEE SYMPOSIUM ON VISUAL LANGUAGES AND HUMAN-CENTRIC COMPUTING, VL/HCC

Abstract
In recent years, the research community has raised serious questions about the replicability and reproducibility of scientific work. In particular, since many studies include some kind of computing work, these are also technological challenges, not only in computer science but in most research domains. Replicability and reproducibility are not easy to achieve, not only because researchers have diverse proficiency in computing technologies, but also because of the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment using the same frameworks, code, programming languages, dependencies, and so on. In this work, we propose a vision for an Integrated Development Environment allowing the creation, configuration, execution, packaging, and sharing of scientific computational experiments. Such a framework should allow researchers to easily set the code and data used and define the programming languages, code, dependencies, databases, or commands to execute to achieve consistent results for each experiment. With this work, we intend to aid researchers by integrating into the same platform all the stages of the design, execution, and analysis of a computational experiment.

2023

Telephone-based psychological crisis intervention: the Portuguese experience with COVID-19

Autores
Ribeiro, E; Sampaio, A; Gonçalves, MM; Taveira, MDC; Cunha, J; Maia, Â; Matos, M; Gonçalves, S; Figueiredo, B; Freire, T; Soares, T;

Publicação
How the COVID-19 Pandemic Transformed the Mental Health Landscape

Abstract

2023

Generative Adversarial Networks in Healthcare: A Case Study on MRI Image Generation

Autores
Cepa, B; Brito, C; Sousa, A;

Publicação
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG

Abstract
Medical imaging, mainly Magnetic Resonance Imaging (MRI), plays a predominant role in healthcare diagnosis. Nevertheless, the diagnostic process is prone to errors and is conditioned by available medical data, which might be insufficient. A novel solution is resorting to image generation algorithms to address these challenges. Thus, this paper presents a Deep Learning model based on a Deep Convolutional Generative Adversarial Network (DCGAN) architecture. Our model generates 2D MRI images of size 256x256, containing an axial view of the brain with a tumor. The model was implemented using ChainerMN, a scalable and flexible framework that enables faster and parallel training of Deep Learning networks. The images obtained provide an overall representation of the brain structure and the tumoral area and show considerable brain-tumor separation. For this purpose, and owing to their previous state-of-the-art results in general image-generation tasks, we conclude that GAN-based models are a promising approach for medical imaging.

2023

General-Purpose Secure Conflict-free Replicated Data Types

Autores
Portela, B; Pacheco, H; Jorge, P; Pontes, R;

Publicação
2023 IEEE 36TH COMPUTER SECURITY FOUNDATIONS SYMPOSIUM, CSF

Abstract
Conflict-free Replicated Data Types (CRDTs) are a very popular class of distributed data structures that strike a compromise between strong and eventual consistency. Ensuring the protection of data stored within a CRDT, however, cannot be done trivially using standard encryption techniques, as secure CRDT protocols would require replica-side computation. This paper proposes an approach to lift general-purpose implementations of CRDTs to secure variants using secure multiparty computation (MPC). Each replica within the system is realized by a group of MPC parties that compute its functionality. Our results include: i) an extension of current formal models used for reasoning over the security of CRDT solutions to the MPC setting; ii) a MPC language and type system to enable the construction of secure versions of CRDTs and; iii) a proof of security that relates the security of CRDT constructions designed under said semantics to the underlying MPC library. We provide an open-source system implementation with an extensive evaluation, which compares different designs with their baseline throughput and latency.

2023

Privacy-Preserving Machine Learning in Life Insurance Risk Prediction

Autores
Pereira, K; Vinagre, J; Alonso, AN; Coelho, F; Carvalho, M;

Publicação
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
The application of machine learning to insurance risk prediction requires learning from sensitive data. This raises multiple ethical and legal issues. One of the most relevant ones is privacy. However, privacy-preserving methods can potentially hinder the predictive potential of machine learning models. In this paper, we present preliminary experiments with life insurance data using two privacy-preserving techniques: discretization and encryption. Our objective with this work is to assess the impact of such privacy preservation techniques in the accuracy of ML models. We instantiate the problem in three general, but plausible Use Cases involving the prediction of insurance claims within a 1-year horizon. Our preliminary experiments suggest that discretization and encryption have negligible impact in the accuracy of ML models.

2023

Caos: A Reusable Scala Web Animator of Operational Semantics

Autores
Proença, J; Edixhoven, L;

Publicação
COORDINATION MODELS AND LANGUAGES, COORDINATION 2023

Abstract
This tool paper presents Caos: a methodology and a programming framework for computer-aided design of structural operational semantics for formal models. This framework includes a set of Scala libraries and a workflow to produce visual and interactive diagrams that animate and provide insights over the structure and the semantics of a given abstract model with operational rules. Caos follows an approach in which theoretical foundations and a practical tool are built together, as an alternative to foundations-first design (tool justifies theory) or tool-first design (foundations justify practice). The advantage of Caos is that the tool-under-development can immediately be used to automatically run numerous and sizeable examples in order to identify subtle mistakes, unexpected outcomes, and unforeseen limitations in the foundations-under-development, as early as possible. We share two success stories of Caos' methodology and framework in our own teaching and research context, where we analyse a simple while-language and a choreographic language, including their operational rules and the concurrent composition of such rules. We further discuss how others can include Caos in their own analysis and Scala tools.

  • 21
  • 251