Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HASLab

2021

Fuzzy Automata as Coalgebras

Autores
Liu, A; Wang, S; Barbosa, LS; Sun, M;

Publicação
MATHEMATICS

Abstract
The coalgebraic method is of great significance to research in process algebra, modal logic, object-oriented design and component-based software engineering. In recent years, fuzzy control has been widely used in many fields, such as handwriting recognition and the control of robots or air conditioners. It is then an interesting topic to analyze the behavior of fuzzy automata from a coalgebraic point of view. This paper models different types of fuzzy automata as coalgebras with a monad structure capturing fuzzy behavior. Based on the coalgebraic models, we can define a notion of fuzzy language and consider several versions of bisimulation for fuzzy automata. A group of combinators is defined to compose fuzzy automata of two branches: state transition and output function. A case study illustrates the coalgebraic models proposed and their composition.

2021

Towards a specification theory for fuzzy modal logic

Autores
Jain, M; Gomes, L; Madeira, A; Barbosa, LS;

Publicação
2021 INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF SOFTWARE ENGINEERING (TASE 2021)

Abstract
Fuzziness, as a way to express imprecision, or uncertainty, in computation is an important feature in a number of current application scenarios: from hybrid systems interfacing with sensor networks with error boundaries, to knowledge bases collecting data from often non-coincident human experts. Their abstraction in e.g. fuzzy transition systems led to a number of mathematical structures to model this sort of systems and reason about them. This paper adds two more elements to this family: two modal logics, framed as institutions, to reason about fuzzy transition systems and the corresponding processes. This paves the way to the development, in the second part of the paper, of an associated theory of structured specification for fuzzy computational systems.

2021

Generalised Quantum Tree Search

Autores
Sequeira, A; Santos, LP; Barbosa, LS;

Publicação
2021 IEEE/ACM 2ND INTERNATIONAL WORKSHOP ON QUANTUM SOFTWARE ENGINEERING (Q-SE 2021)

Abstract
This extended abstract reports on on-going research on quantum algorithmic approaches to the problem of generalised tree search that may exhibit effective quantum speedup, even in the presence of non-constant branching factors. Two strategies are briefly summarised and current work outlined.

2021

Quantum Tree-Based Planning

Autores
Sequeira, A; Santos, LP; Barbosa, LS;

Publicação
IEEE ACCESS

Abstract
Reinforcement Learning is at the core of a recent revolution in Artificial Intelligence. Simultaneously, we are witnessing the emergence of a new field: Quantum Machine Learning. In the context of these two major developments, this work addresses the interplay between Quantum Computing and Reinforcement Learning. Learning by interaction is possible in the quantum setting using the concept of oraculization of environments. The paper extends previous oracular instances to address more general stochastic environments. In this setting, we developed a novel quantum algorithm for near-optimal decision-making based on the Reinforcement Learning paradigm known as Sparse Sampling. The proposed algorithm exhibits a quadratic speedup compared to its classical counterpart. To the best of the authors' knowledge, this is the first quantum planning algorithm exhibiting a time complexity independent of the number of states of the environment, which makes it suitable for large state space environments, where planning is otherwise intractable.

2021

A semantics and a logic for Fuzzy Arden Syntax

Autores
Gomes, L; Madeira, A; Barbosa, LS;

Publicação
SOFT COMPUTING

Abstract
Fuzzy programming languages, such as the Fuzzy Arden Syntax (FAS), are used to describe behaviours which evolve in a fuzzy way and thus cannot be characterized neither by a Boolean outcome nor by a probability distribution. This paper introduces a semantics for FAS, focusing on the weighted parallel interpretation of its conditional statement. The proposed construction is based on the notion of a fuzzy multirelation which associates with each state in a program a fuzzy set of weighted possible evolutions. The latter is parametric on a residuated lattice which models the underlying semantic 'truth space'. Finally, a family of dynamic logics, equally parametric on the residuated lattice, is introduced to reason about FAS programs.

2021

Quantum Bayesian Decision-Making

Autores
de Oliveira, M; Barbosa, LS;

Publicação
FOUNDATIONS OF SCIENCE

Abstract
As a compact representation of joint probability distributions over a dependence graph of random variables, and a tool for modelling and reasoning in the presence of uncertainty, Bayesian networks are of great importance for artificial intelligence to combine domain knowledge, capture causal relationships, or learn from incomplete datasets. Known as a NP-hard problem in a classical setting, Bayesian inference pops up as a class of algorithms worth to explore in a quantum framework. This paper explores such a research direction and improves on previous proposals by a judicious use of the utility function in an entangled configuration. It proposes a completely quantum mechanical decision-making process with a proven computational advantage. A prototype implementation in Qiskit (a Python-based program development kit for the IBM Q machine) is discussed as a proof-of-concept.

  • 39
  • 247