2021
Autores
Shoker, A; Yactine, H;
Publicação
Advances in Information Security
Abstract
Fog/Edge computing improves the latency and security of data by keeping storage and computation close to the data source. Nevertheless, this raises other security challenges against malicious, a.k.a, Byzantine, attacks that can exploit the isolation of nodes, or when access to distributed data is required in untrusted environments. In this work, we study the feasibility of deploying Byzantine Agreement protocols to improve the security of fog/edge systems in untrusted environments. In particular, we explore existing Byzantine Agreement protocols, heavily developed in the Blockchain area, emphasizing the Consistency, Availability, and Partition-Tolerance tradeoffs in a geo-replicated system. Our work identifies and discusses three different approaches that follow the Strong Consistency, Eventual Consistency, and Strong Eventual Consistency models. Our conclusions show that Byzantine Agreement protocols are still immature to be used by fog/edge computing in untrusted environment due to their high finality latency; however, they are promising candidates that encourage further research in this direction. © 2021, Springer Nature Switzerland AG.
2021
Autores
Yactine, H; Shoker, A; Younes, G;
Publicação
Distributed Applications and Interoperable Systems - 21st IFIP WG 6.1 International Conference, DAIS 2021, Held as Part of the 16th International Federated Conference on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings
Abstract
2021
Autores
Faria, A; Macedo, R; Pereira, J; Paulo, J;
Publicação
Proceedings of the 14th ACM International Conference on Systems and Storage
Abstract
2021
Autores
Silva, JM; Fonte, V; Sousa, A;
Publicação
ACM International Conference Proceeding Series
Abstract
The path towards the United Nations objective of providing legal identity for all, including free birth registrations, has been facing several challenges. Particularly, the diversity of social realities, limited ICT infrastructures, inadequate legal frameworks, and unstable political engagement have resulted in solutions highly fitted to a specific scenario, thus hard to be replicated in different regions. Paired with noncomprehensive public services of civil registration, these aspects impact the way identity records are created, stored and used by citizens in their daily interactions. To tackle these impairments, this work introduces IDINA, a non-authoritative approach aiming at a community-oriented identification system underpinned by relations of social trust, inclusiveness, and the use of cutting-edge accessible technologies. © 2021 Owner/Author.
2021
Autores
Novo, C; Silva, JMC; Morla, R;
Publicação
PROCEEDINGS OF THE 2021 12TH INTERNATIONAL CONFERENCE ON NETWORK OF THE FUTURE (NOF 2021)
Abstract
Packet sampling plays an important role in keeping storage and processing requirements at a manageable level in network management. However, because it reduces the amount of available information, it can also reduce the performance of some related tasks, such as detecting security events. In this context, this work explores how packet sampling impacts machine learning-based tasks, in particular, flow-based C2 TLS malware traffic detection using a deep neural network. Based on a proposed lightweight sampling scheme, the ongoing results show a small reduction in classification accuracy compared with analysing all the traffic, while reducing in 10 fold the number of packets processed.
2021
Autores
Machado, BS; Silva, JMC; Lima, SR; Carvalho, P;
Publicação
12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2021)
Abstract
Huge efforts and resources are spent every year on prevention and recovery of cyberattacks targeting users, services and network infrastructures. Software-Defined Networking (SDN) is a technology providing advances to the field of security with the ability of programming the network, promoting high-performance solutions and efficient resource utilization at low costs, as the use of specialized hardware is avoided. The present paper aims at exploring the SDN paradigm to develop an SDN-based framework for prevention and mitigation of malicious attacks throuhgt the network. The framework design and proposal has concerns regarding the efficient use of network and computational resources, distributing the inspection of suspicious flows by distinct Intrusion Detection Systems. For this purpose, a load-balancing strategy for traffic inspection is devised, allowing to balance both the usage of resources and the analysis of traffic flows. In this way, this paper also sheds light on the usage of OpenFlow messages to build distributed SDN-based applications with the mentioned properties.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.