Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2024

When the tourist home environment is so similar to a distant foreign destination: Evidence of constant vicarious experience effect on college students

Autores
Mou, JJ; Brito, PQ;

Publicação
JOURNAL OF DESTINATION MARKETING & MANAGEMENT

Abstract
Vicarious experiences in tourism possess significant marketing implications. While numerous studies have explored how various forms of vicarious experiences can impact an individual, the role of different time spans as a key factor determining the extent of said impact has been neglected in prior research. To address this gap, the present study thus bridges environmental psychology with the context of tourism and applies the theory of mental representations. An experiment (n = 359) was designed to examine differences in select mental representation dimensions (cognitive, affective, conative, and sensorial) among male and female Chinese college students who have zero/medium/maximum durations of constant vicarious experiences related to European destinations in their home environment. The results indicate that the medium duration of constant vicarious experiences leads to the most positive changes in cognitive and conative dimensions, while the longest constant vicarious experiences produce desirable affective dimension outcomes. Moreover, male college students seem to be more susceptible to the influences of such constant vicarious experiences.

2024

Ai Effect on Innovation Capacity in the Context of Industry 5.0: An Explanatory Study

Autores
adrien.becue@gmail.com, B; Gama, J; Quelhas Brito, P;

Publicação

Abstract

2024

Federated Learning in Medical Image Analysis: A Systematic Survey

Autores
da Silva, FR; Camacho, R; Tavares, JMRS;

Publicação
ELECTRONICS

Abstract
Medical image analysis is crucial for the efficient diagnosis of many diseases. Typically, hospitals maintain vast repositories of images, which can be leveraged for various purposes, including research. However, access to such image collections is largely restricted to safeguard the privacy of the individuals whose images are being stored, as data protection concerns come into play. Recently, the development of solutions for Automated Medical Image Analysis has gained significant attention, with Deep Learning being one solution that has achieved remarkable results in this area. One promising approach for medical image analysis is Federated Learning (FL), which enables the use of a set of physically distributed data repositories, usually known as nodes, satisfying the restriction that the data do not leave the repository. Under these conditions, FL can build high-quality, accurate deep-learning models using a lot of available data wherever it is. Therefore, FL can help researchers and clinicians diagnose diseases and support medical decisions more efficiently and robustly. This article provides a systematic survey of FL in medical image analysis, specifically based on Magnetic Resonance Imaging, Computed Tomography, X-radiography, and histology images. Hence, it discusses applications, contributions, limitations, and challenges and is, therefore, suitable for those who want to understand how FL can contribute to the medical imaging domain.

2024

Imitation learning for aerobatic maneuvering in fixed-wing aircraft

Autores
Freitas, H; Camacho, R; Silva, DC;

Publicação
JOURNAL OF COMPUTATIONAL SCIENCE

Abstract
This study focuses on the task of developing automated models for complex aerobatic aircraft maneuvers. The approach employed here utilizes Behavioral Cloning, a technique in which human pilots supply a series of sample maneuvers. These maneuvers serve as training data for a Machine Learning algorithm, enabling the system to generate control models for each maneuver. The optimal instances for each maneuver were chosen based on a set of objective evaluation criteria. By utilizing these selected sets of examples, resilient models were developed, capable of reproducing the maneuvers performed by the human pilots who supplied the examples. In certain instances, these models even exhibited superior performance compared to the pilots themselves, a phenomenon referred to as the clean-up effect. We also explore the application of transfer learning to adapt the developed controllers to various airplane models, revealing compelling evidence that transfer learning is effective for refining them for targeted aircraft. A comprehensive set of intricate maneuvers was executed through a meta -controller capable of orchestrating the fundamental maneuvers acquired through imitation. This undertaking yielded promising outcomes, demonstrating the proficiency of several Machine Learning models in successfully executing highly intricate aircraft maneuvers.

2024

Spatio-Temporal Parallel Transformer based model for Traffic Prediction

Autores
Kumar, R; Mendes-Moreira, J; Chandra, J;

Publicação
ACM Transactions on Knowledge Discovery from Data

Abstract
Traffic forecasting problems involve jointly modeling the non-linear spatio-temporal dependencies at different scales. While Graph Neural Network models have been effectively used to capture the non-linear spatial dependencies, capturing the dynamic spatial dependencies between the locations remains a major challenge. The errors in capturing such dependencies propagate in modeling the temporal dependencies between the locations, thereby severely affecting the performance of long-term predictions. While transformer-based mechanisms have been recently proposed for capturing the dynamic spatial dependencies, these methods are susceptible to fluctuations in data brought on by unforeseen events like traffic congestion and accidents. To mitigate these issues we propose an improvised Spatio-temporal parallel transformer (STPT) based model for traffic prediction that uses multiple adjacency graphs passed through a pair of coupled graph transformer-convolution network units, operating in parallel, to generate more noise-resilient embeddings. We conduct extensive experiments on 4 real-world traffic datasets and compare the performance of STPT with several state-of-the-art baselines, in terms of measures like RMSE, MAE, and MAPE. We find that using STPT improves the performance by around \(10-34\%\) as compared to the baselines. We also investigate the applicability of the model on other spatio-temporal data in other domains. We use a covid-19 dataset to predict the number of future occurrences in different regions from a given set of historical occurrences. The results demonstrate the superiority of our model for such datasets.

2024

KDBI special issue: Explainability feature selection framework application for LSTM multivariate time-series forecast self optimization

Autores
Rodrigues, EM; Baghoussi, Y; Mendes-Moreira, J;

Publicação
EXPERT SYSTEMS

Abstract
Deep learning models are widely used in multivariate time series forecasting, yet, they have high computational costs. One way to reduce this cost is by reducing data dimensionality, which involves removing unimportant or low importance information with the proper method. This work presents a study on an explainability feature selection framework composed of four methods (IMV-LSTM Tensor, LIME-LSTM, Average SHAP-LSTM, and Instance SHAP-LSTM) aimed at using the LSTM black-box model complexity to its favour, with the end goal of improving the error metrics and reducing the computational cost on a forecast task. To test the framework, three datasets with a total of 101 multivariate time series were used, with the explainability methods outperforming the baseline methods in most of the data, be it in error metrics or computation time for the LSTM model training.

  • 10
  • 440