2024
Autores
Cerqueira, V; dos Santos, MR; Baghoussi, Y; Soares, C;
Publicação
CoRR
Abstract
2024
Autores
Gomes, I; Teixeira, LF; van Rijn, JN; Soares, C; Restivo, A; Cunha, L; Santos, M;
Publicação
CoRR
Abstract
2024
Autores
Roque, L; Soares, C; Cerqueira, V; Torgo, L;
Publicação
CoRR
Abstract
2024
Autores
Silva, A; Restivo, A; Santos, M; Soares, C;
Publicação
CoRR
Abstract
2024
Autores
Silva, IOe; Soares, C; Cerqueira, V; Rodrigues, A; Bastardo, P;
Publicação
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part III
Abstract
TadGAN is a recent algorithm with competitive performance on time series anomaly detection. The detection process of TadGAN works by comparing observed data with generated data. A challenge in anomaly detection is that there are anomalies which are not easy to detect by analyzing the original time series but have a clear effect on its higher-order characteristics. We propose Meta-TadGAN, an adaptation of TadGAN that analyzes meta-level representations of time series. That is, it analyzes a time series that represents the characteristics of the time series, rather than the original time series itself. Results on benchmark datasets as well as real-world data from fire detectors shows that the new method is competitive with TadGAN. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Autores
Alves, VM; Cardoso, JD; Gama, J;
Publicação
NUCLEAR MEDICINE AND MOLECULAR IMAGING
Abstract
Purpose 2-[F-18]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for classification of pulmonary nodules from 2-[F-18]FDG PET images.Methods One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[F-18]FDG PET images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used.Results The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455-1.0000) in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for an optimised decision threshold that assigns a higher cost to false negatives.Conclusion A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[F-18]FDG PET images.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.