Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2018

Metalearning and Recommender Systems: A literature review and empirical study on the algorithm selection problem for Collaborative Filtering

Autores
Cunha, T; Soares, C; de Carvalho, ACPLF;

Publicação
INFORMATION SCIENCES

Abstract
The problem of information overload motivated the appearance of Recommender Systems. From the several open problems in this area, the decision of which is the best recommendation algorithm for a specific problem is one of the most important and less studied. The current trend to solve this problem is the experimental evaluation of several recommendation algorithms in a handful of datasets. However, these studies require an extensive amount of computational resources, particularly processing time. To avoid these drawbacks, researchers have investigated the use of Metalearning to select the best recommendation algorithms in different scopes. Such studies allow to understand the relationships between data characteristics and the relative performance of recommendation algorithms, which can be used to select the best algorithm(s) for a new problem. The contributions of this study are two-fold: 1) to identify and discuss the key concepts of algorithm selection for recommendation algorithms via a systematic literature review and 2) to perform an experimental study on the Metalearning approaches reviewed in order to identify the most promising concepts for automatic selection of recommendation algorithms.

2018

A Label Ranking approach for selecting rankings of Collaborative Filtering algorithms

Autores
Cunha, T; Soares, C; de Carvalho, ACPLF;

Publicação
33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING

Abstract
The large amount of Recommender System algorithms makes the selection of the most suitable algorithm for a new dataset a difficult task. Metalearning has been successfully used to deal with this problem. It works by mapping dataset characteristics with the predictive performance obtained by a set of algorithms. The models built on this data are capable of predicting the best algorithm for a new dataset. However, typical approaches try only to predict the best algorithm, overlooking the performance of others. This study focus on the use of Metalearning to select the best ranking of CF algorithms for a new recommendation dataset. The contribution lies in the formalization and experimental validation of using Label Ranking to select a ranked list of algorithms. The experimental procedure proves the superior performance of the proposed approach regarding both ranking accuracy and impact on the baselevel performance. Furthermore, it draws and compares the knowledge regarding metafeature importance for both classification and Label Ranking tasks in order to provide guidelines for the design of algorithms in the Recommender System community.

2018

Enhancing multilabel classification for food truck recommendation

Autores
Rivolli, A; Soares, C; de Carvalho, ACPLF;

Publicação
EXPERT SYSTEMS

Abstract
Food trucks are a widely popular fast food restaurant alternative, whose differentiating factor is their proximity to customers. Their popularity has stimulated the expansion of available options, which now includes several different types of cuisines, consequently making the choice by customers a challenging issue. From data obtained via a market research, in which hundreds of participants provided their food truck preferences, this paper focuses on the problem of food truck recommendation using a multilabel approach. In particular, it investigates how to improve the recommendation task regarding a previous work, where some labels have never been predicted. In order to address this problem, different alternatives were investigated. One of these alternatives, the Ensemble of Single Label, proposed in this paper, was able to reduce it. Despite its simplicity, good predictive results were obtained when they were used in the investigated task. Among other benefits, all labels were correctly predicted at least for few instances.

2018

CF4CF-META: Hybrid Collaborative Filtering Algorithm Selection Framework

Autores
Cunha, T; Soares, C; de Carvalho, ACPLF;

Publicação
Discovery Science - 21st International Conference, DS 2018, Limassol, Cyprus, October 29-31, 2018, Proceedings

Abstract
The algorithm selection problem refers to the ability to predict the best algorithms for a new problem. This task has been often addressed by Metalearning, which looks for a function able to map problem characteristics to the performance of a set of algorithms. In the context of Collaborative Filtering, a few studies have proposed and validated the merits of different types of problem characteristics for this problem (i.e. dataset-based approach): using systematic metafeatures and performance estimations obtained by subsampling landmarkers. More recently, the problem was tackled using Collaborative Filtering models in a novel framework named CF4CF. This framework leverages the performance estimations as ratings in order to select the best algorithms without using any data characteristics (i.e algorithm-based approach). Given the good results obtained independently using each approach, this paper starts with the hypothesis that the integration of both approaches in a unified algorithm selection framework can improve the predictive performance. Hence, this work introduces CF4CF-META, an hybrid framework which leverages both data and algorithm ratings within a modified Label Ranking model. Furthermore, it takes advantage of CF4CF’s internal mechanism to use samples of data at prediction time, which has proven to be effective. This work starts by explaining and formalizing state of the art Collaborative Filtering algorithm selection frameworks (Metalearning, CF4CF and CF4CF-META) and assess their performance via an empirical study. The results show CF4CF-META is able to consistently outperform all other frameworks with statistically significant differences in terms of meta-accuracy and requires fewer landmarkers to do so. © 2018, Springer Nature Switzerland AG.

2018

CF4CF: Recommending Collaborative Filtering algorithms using Collaborative Filtering

Autores
Cunha, T; Soares, C; de Carvalho, ACPLF;

Publicação
12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS)

Abstract
As Collaborative Filtering becomes increasingly important in both academia and industry recommendation solutions, it also becomes imperative to study the algorithm selection task in this domain. This problem aims at inding automatic solutions which enable the selection of the best algorithms for a new problem, without performing full-ledged training and validation procedures. Existing work in this area includes several approaches using Metalearning, which relate the characteristics of the problem domain with the performance of the algorithms. This study explores an alternative approach to deal with this problem. Since, in essence, the algorithm selection problem is a recommendation problem, we investigate the use of Collaborative Filtering algorithms to select Collaborative Filtering algorithms. The proposed approach integrates subsampling landmarkers, a data characterization approach commonly used in Metalearning, with a Collaborative Filtering methodology, named CF4CF. The predictive performance obtained by CF4CF using benchmark recommendation datasets was similar or superior to that obtained with Metalearning.

2018

Machine Learning for Drugs Prescription

Autores
Silva, P; Rivolli, A; Rocha, P; Correia, F; Soares, C;

Publicação
Intelligent Data Engineering and Automated Learning - IDEAL 2018 - 19th International Conference, Madrid, Spain, November 21-23, 2018, Proceedings, Part I

Abstract
In a medical appointment, patient information, including past exams, is analyzed in order to define a diagnosis. This process is prone to errors, since there may be many possible diagnoses. This analysis is very dependent on the experience of the doctor. Even with the correct diagnosis, prescribing medicines can be a problem, because there are multiple drugs for each disease and some may not be used due to allergies or high cost. Therefore, it would be helpful, if the doctors were able to use a system that, for each diagnosis, provided a list of the most suitable medicines. Our approach is to support the physician in this process. Rather than trying to predict the medicine, we aim to, given the available information, predict the set of the most likely drugs. The prescription problem may be solved as a Multi-Label classification problem since, for each diagnosis, multiple drugs may be prescribed at the same time. Due to its complexity, some simplifications were performed for the problem to be treatable. So, multiple approaches were done with different assumptions. The data supplied was also complex, with important problems in its quality, that led to a strong investment in data preparation, in particular, feature engineering. Overall, the results in each scenario are good with performances almost twice the baseline, especially using Binary Relevance as transformation approach. © 2018, Springer Nature Switzerland AG.

  • 156
  • 429