Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2018

Transcription factor activities enhance markers of drug sensitivity in cancer

Autores
Garcia Alonso, L; Iorio, F; Matchan, A; Fonseca, N; Jaaks, P; Peat, G; Pignatelli, M; Falcone, F; Benes, CH; Dunham, I; Bignell, G; McDade, SS; Garnett, MJ; Saez Rodriguez, J;

Publicação
Cancer Research

Abstract
Transcriptional dysregulation induced by aberrant transcription factors (TF) is a key feature of cancer, but its global influence on drug sensitivity has not been examined. Here, we infer the transcriptional activity of 127 TFs through analysis of RNA-seq gene expression data newly generated for 448 cancer cell lines, combined with publicly available datasets to survey a total of 1,056 cancer cell lines and 9,250 primary tumors. Predicted TF activities are supported by their agreement with independent shRNA essentiality profiles and homozygous gene deletions, and recapitulate mutant-specific mechanisms of transcriptional dysregulation in cancer. By analyzing cell line responses to 265 compounds, we uncovered numerous TFs whose activity interacts with anticancer drugs. Importantly, combining existing pharmacogenomic markers with TF activities often improves the stratification of cell lines in response to drug treatment. Our results, which can be queried freely at dorothea.opentargets.io, offer a broad foundation for discovering opportunities to refine personalized cancer therapies. Significance: Systematic analysis of transcriptional dysregulation in cancer cell lines and patient tumor specimens offers a publicly searchable foundation to discover new opportunities to refine personalized cancer therapies. © 2017 American Association for Cancer Research.

2018

Expression Atlas: gene and protein expression across multiple studies and organisms

Autores
Papatheodorou, I; Fonseca, NA; Keays, M; Tang, YA; Barrera, E; Bazant, W; Burke, M; Füllgrabe, A; Pomer Fuentes, AM; George, N; Huerta, L; Koskinen, S; Mohammed, S; Geniza, MJ; Preece, J; Jaiswal, P; Jarnuczak, A; Huber, W; Stegle, O; Vizcaíno, JA; Brazma, A; Petryszak, R;

Publicação
Nucleic Acids Research

Abstract
Expression Atlas (http://www.ebi.ac.uk/gxa) is an added value database that provides information about gene and protein expression in different species and contexts, such as tissue, developmental stage, disease or cell type. The available public and controlled access data sets from different sources are curated and re-analysed using standardized, open source pipelines and made available for queries, download and visualization. As of August 2017, Expression Atlas holds data from 3,126 studies across 33 different species, including 731 from plants. Data from large-scale RNA sequencing studies including Blueprint, PCAWG, ENCODE, GTEx and HipSci can be visualized next to each other. In Expression Atlas, users can query genes or gene-sets of interest and explore their expression across or within species, tissues, developmental stages in a constitutive or differential context, representing the effects of diseases, conditions or experimental interventions. All processed data matrices are available for direct download in tab-delimited format or as R-data. In addition to the web interface, data sets can now be searched and downloaded through the Expression Atlas R package. Novel features and visualizations include the on-the-fly analysis of gene set overlaps and the option to view gene co-expression in experiments investigating constitutive gene expression across tissues or other conditions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

2018

Gramene 2018: unifying comparative genomics and pathway resources for plant research

Autores
Tello Ruiz, MK; Naithani, S; Stein, JC; Gupta, P; Campbell, M; Olson, A; Wei, S; Preece, J; Geniza, MJ; Jiao, Y; Lee, YK; Wang, B; Mulvaney, J; Chougule, K; Elser, J; Bader, NA; Kumari, S; Thomason, J; Kumar, V; Bolser, DM; Naamati, G; Tapanari, E; Fonseca, NA; Huerta, L; Iqbal, H; Keays, M; Pomer Fuentes, AM; Tang, YA; Fabregat, A; D'Eustachio, P; Weiser, J; Stein, LD; Petryszak, R; Papatheodorou, I; Kersey, PJ; Lockhart, P; Taylor, C; Jaiswal, P; Ware, D;

Publicação
Nucleic Acids Research

Abstract

2018

Inferences on specificity recognition at the Malusxdomestica gametophytic self-incompatibility system

Autores
Pratas, MI; Aguiar, B; Vieira, J; Nunes, V; Teixeira, V; Fonseca, NA; Iezzoni, A; van Nocker, S; Vieira, CP;

Publicação
SCIENTIFIC REPORTS

Abstract
In Malus x domestica (Rosaceae) the product of each SFBB gene (the pollen component of the gametophytic self-incompatibility (GSI) system) of a S-haplotype (the combination of pistil and pollen genes that are linked) interacts with a sub-set of non-self S-RNases (the pistil component), but not with the self S-RNase. To understand how the Malus GSI system works, we identified 24 SFBB genes expressed in anthers, and determined their gene sequence in nine M. domestica cultivars. Expression of these SFBBs was not detected in the petal, sepal, filament, receptacle, style, stigma, ovary or young leaf. For all SFBBs (except SFBB15), identical sequences were obtained only in cultivars having the same S-RNase. Linkage with a particular S-RNase was further established using the progeny of three crosses. Such data is needed to understand how other genes not involved in GSI are affected by the S-locus region. To classify SFBBs specificity, the amino acids under positive selection obtained when performing intra-haplotypic analyses were used. Using this information and the previously identified S-RNase positively selected amino acid sites, inferences are made on the S-RNase amino acid properties (hydrophobicity, aromatic, aliphatic, polarity, and size), at these positions, that are critical features for GSI specificity determination.

2018

Gramene 2018: Unifying comparative genomics and pathway resources for plant research

Autores
Tello Ruiz, MK; Naithani, S; Stein, JC; Gupta, P; Campbell, M; Olson, A; Wei, S; Preece, J; Geniza, MJ; Jiao, Y; Lee, YK; Wang, B; Mulvaney, J; Chougule, K; Elser, J; Al Bader, N; Kumari, S; Thomason, J; Kumar, V; Bolser, DM; Naamati, G; Tapanari, E; Fonseca, N; Huerta, L; Iqbal, H; Keays, M; Munoz Pomer Fuentes, A; Tang, A; Fabregat, A; D'Eustachio, P; Weiser, J; Stein, LD; Petryszak, R; Papatheodorou, I; Kersey, PJ; Lockhart, P; Taylor, C; Jaiswal, P; Ware, D;

Publicação
Nucleic Acids Research

Abstract
Gramene (http://www.gramene.org) is a knowledgebase for comparative functional analysis in major crops and model plant species. The current release, #54, includes over 1.7 million genes from 44 reference genomes, most of which were organized into 62,367 gene families through orthologous and paralogous gene classification, whole-genome alignments, and synteny. Additional gene annotations include ontology-based protein structure and function; genetic, epigenetic, and phenotypic diversity; and pathway associations. Gramene's Plant Reactome provides a knowledgebase of cellular-level plant pathway networks. Specifically, it uses curated rice reference pathways to derive pathway projections for an additional 66 species based on gene orthology, and facilitates display of gene expression, gene-gene interactions, and user-defined omics data in the context of these pathways. As a community portal, Gramene integrates best-of-class software and infrastructure components including the Ensembl genome browser, Reactome pathway browser, and Expression Atlas widgets, and undergoes periodic data and software upgrades. Via powerful, intuitive search interfaces, users can easily query across various portals and interactively analyze search results by clicking on diverse features such as genomic context, highly augmented gene trees, gene expression anatomograms, associated pathways, and external informatics resources. All data in Gramene are accessible through both visual and programmatic interfaces. © Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

2018

Tumors induce de novo steroid biosynthesis in T cells to evade immunity

Autores
Mahata, B; Pramanik, J; van der Weyden, L; Polanski, K; Kar, G; Riedel, A; Chen, X; Fonseca, NA; Kundu, K; Campos, LS; Ryder, E; Duddy, G; Walczak, I; Okkenhaug, K; Adams, DJ; Shields, JD; Teichmann, SA;

Publicação

Abstract
ABSTRACTTumors subvert immune cell function to evade immune responses, yet the complex mechanisms driving immune evasion remain poorly understood. Here we show that tumors induce de novo steroidogenesis in T lymphocytes to evade anti-tumor immunity. Using a novel transgenic steroidogenesis-reporter mouse line we identify and characterize de novo steroidogenic immune cells. Genetic ablation of T cell steroidogenesis restricts primary tumor growth and metastatic dissemination in mouse models. Steroidogenic T cells dysregulate anti-tumor immunity, and inhibition of the steroidogenesis pathway was sufficient to restore anti-tumor immunity. This study demonstrates T cell de novo steroidogenesis as a mechanism of anti-tumor immunosuppression and a potential druggable target.

  • 163
  • 429