Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2017

Arbitrated Ensemble for Solar Radiation Forecasting

Autores
Cerqueira, V; Torgo, L; Soares, C;

Publicação
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I

Abstract
Utility companies rely on solar radiation forecasting models to control the supply and demand of energy as well as the operability of the grid. They use these predictive models to schedule power plan operations, negotiate prices in the electricity market and improve the performance of solar technologies in general. This paper proposes a novel method for global horizontal irradiance forecasting. The method is based on an ensemble approach, in which individual competing models are arbitrated by a metalearning layer. The goal of arbitrating individual forecasters is to dynamically combine them according to their aptitude in the input data. We validate our proposed model for solar radiation forecasting using data collected by a real-world provider. The results from empirical experiments show that the proposed method is competitive with other methods, including current state-of-the-art methods used for time series forecasting tasks.

2017

Inductive Transfer

Autores
Vilalta, R; Giraud Carrier, CG; Brazdil, P; Soares, C;

Publicação
Encyclopedia of Machine Learning and Data Mining

Abstract

2017

Label Ranking Forests

Autores
de Sa, CR; Soares, C; Knobbe, A; Cortez, P;

Publicação
EXPERT SYSTEMS

Abstract
The problem of Label Ranking is receiving increasing attention from several research communities. The algorithms that have been developed/adapted to treat rankings of a fixed set of labels as the target object, including several different types of decision trees (DT). One DT-based algorithm, which has been very successful in other tasks but which has not been adapted for label ranking is the Random Forests (RF) algorithm. RFs are an ensemble learning method that combines different trees obtained using different randomization techniques. In this work, we propose an ensemble of decision trees for Label Ranking, based on Random Forests, which we refer to as Label Ranking Forests (LRF). Two different algorithms that learn DT for label ranking are used to obtain the trees. We then compare and discuss the results of LRF with standalone decision tree approaches. The results indicate that the method is highly competitive.

2017

Metalearning for Context-aware Filtering: Selection of Tensor Factorization Algorithms

Autores
Cunha, T; Soares, C; de Carvalho, ACPLF;

Publicação
PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17)

Abstract
This work addresses the problem of selecting Tensor Factorization algorithms for the Context-aware Filtering recommendation task using a metalearning approach. The most important challenge of applying metalearning on new problems is the development of useful measures able to characterize the data, i.e. metafeatures. We propose an extensive and exhaustive set of metafeatures to characterize Context-aware Filtering recommendation task. These metafeatures take advantage of the tensor's hierarchical structure via slice operations. The algorithm selection task is addressed as a Label Ranking problem, which ranks the Tensor Factorization algorithms according to their expected performance, rather than simply selecting the algorithm that is expected to obtain the best performance. A comprehensive experimental work is conducted on both levels, baselevel and metalevel (Tensor Factorization and Label Ranking, respectively). The results show that the proposed metafeatures lead to metamodels that tend to rank Tensor Factorization algorithms accurately and that the selected algorithms present high recommendation performance.

2017

autoBagging: Learning to Rank Bagging Workflows with Metalearning

Autores
Pinto, F; Cerqueira, V; Soares, C; Moreira, JM;

Publicação
Proceedings of the International Workshop on Automatic Selection, Configuration and Composition of Machine Learning Algorithms co-located with the European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases, AutoML@PKDD/ECML 2017, Skopje, Macedonia, September 22, 2017.

Abstract
Machine Learning (ML) has been successfully applied to a wide range of domains and applications. One of the techniques behind most of these successful applications is Ensemble Learning (EL), the field of ML that gave birth to methods such as Random Forests or Boosting. The complexity of applying these techniques together with the market scarcity on ML experts, has created the need for systems that enable a fast and easy drop-in replacement for ML libraries. Automated machine learning (autoML) is the field of ML that attempts to answers these needs. We propose autoBagging, an autoML system that automatically ranks 63 bagging workflows by exploiting past performance and metalearning. Results on 140 classification datasets from the OpenML platform show that autoBagging can yield better performance than the Average Rank method and achieve results that are not statistically different from an ideal model that systematically selects the best workflow for each dataset. For the purpose of reproducibility and generalizability, autoBagging is publicly available as an R package on CRAN.

2017

A guidance of data stream characterization for meta-learning

Autores
Debiaso Rossi, ALD; de Souza, BF; Soares, C; de Leon Ferreira de Carvalho, ACPDF;

Publicação
INTELLIGENT DATA ANALYSIS

Abstract
The problem of selecting learning algorithms has been studied by the meta-learning community for more than two decades. One of the most important task for the success of a meta-learning system is gathering data about the learning process. This data is used to induce a (meta) model able to map characteristics extracted from different data sets to the performance of learning algorithms on these data sets. These systems are built under the assumption that the data are generated by a stationary distribution, i.e., a learning algorithm will perform similarly for new data from the same problem. However, many applications generate data whose characteristics can change over time. Therefore, a suitable bias at a given time may become inappropriate at another time. Although meta-learning has been used to continuously select a learning algorithm in data streams, data characterization has received less attention in this context. In this study, we provide a set of guidelines to support the proposal of characteristics able to describe non-stationary data over time. This guidance considers both the order of arrival of the examples and the type of variables involved in the base-level learning. In addition, we analyze the influence of characteristics regarding their dependence on data morphology. Experimental results using real data streams showed the effectiveness of the proposed data characterization general scheme to support algorithm selection by meta-learning systems. Moreover, the dependent metafeatures provided crucial information for the success of some meta-models.

  • 186
  • 429