2016
Autores
Cunha, T; Soares, C; Carvalho, ACPLFd;
Publicação
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II
Abstract
Recommender Systems are an important tool in e-business, for both companies and customers. Several algorithms are available to developers, however, there is little guidance concerning which is the best algorithm for a specific recommendation problem. In this study, a metalearning approach is proposed to address this issue. It consists of relating the characteristics of problems (metafeatures) to the performance of recommendation algorithms. We propose a set of metafeatures based on the application of systematic procedure to develop metafeatures and by extending and generalizing the state of the art metafeatures for recommender systems. The approach is tested on a set of Matrix Factorization algorithms and a collection of real-world Collaborative Filtering datasets. The performance of these algorithms in these datasets is evaluated using several standard metrics. The algorithm selection problem is formulated as classification tasks, where the target attribute is the best Matrix Factorization algorithm, according to each metric. The results show that the approach is viable and that the metafeatures used contain information that is useful to predict the best algorithm for a dataset. © Springer International Publishing AG 2016.
2016
Autores
Costa, A; Cunha, T; Soares, C;
Publicação
KDIR: PROCEEDINGS OF THE 8TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL. 1
Abstract
Recommender systems arose in response to the excess of available online information. These systems assign, to a given individual, suggestions of items that may be relevant. These system's monitoring and evaluation are fundamental to the proper functioning of many business related services. It is the goal of this paper to create a tool capable of collecting, aggregating and supervising the results obtained from the recommendation systems' evaluation. To achieve this goal, a multi-granularity approach is developed and implemented in order to organize the different levels of the problem. This tool also aims to tackle the lack of mechanisms to enable visually assessment of the performance of a recommender systems' algorithm. A functional prototype of the application is presented, with the purpose of validating the solution's concept.
2016
Autores
Saleiro, P; Soares, C;
Publicação
ADVANCES IN INTELLIGENT DATA ANALYSIS XV
Abstract
In this work, we tackle the problem of predicting entity popularity on Twitter based on the news cycle. We apply a supervised learning approach and extract four types of features: (i) signal, (ii) textual, (iii) sentiment and (iv) semantic, which we use to predict whether the popularity of a given entity will be high or low in the following hours. We run several experiments on six different entities in a dataset of over 150M tweets and 5M news and obtained F1 scores over 0.70. Error analysis indicates that news perform better on predicting entity popularity on Twitter when they are the primary information source of the event, in opposition to events such as live TV broadcasts, political debates or football matches.
2016
Autores
Sousa, AFM; Prudencio, RBC; Ludermir, TB; Soares, C;
Publicação
NEUROCOMPUTING
Abstract
Algorithm selection is an important task in different domains of knowledge. Meta-learning treats this task by adopting a supervised learning strategy. Training examples in meta-learning (called meta examples) are generated from experiments performed with a pool of candidate algorithms in a number of problems, usually collected from data repositories or synthetically generated. A meta-learner is then applied to acquire knowledge relating features of the problems and the best algorithms in terms of performance. In this paper, we address an important aspect in meta-learning which is to produce a significant number of relevant meta-examples. Generating a high quality set of meta-examples can be difficult due to the low availability of real datasets in some domains and the high computational cost of labelling the meta-examples. In the current work, we focus on the generation of meta-examples for meta-learning by combining: (1) a promising approach to generate new datasets (called datasetoids) by manipulating existing ones; and (2) active learning methods to select the most relevant datasets previously generated. The datasetoids approach is adopted to augment the number of useful problem instances for meta-example construction. However not all generated problems are equally relevant. Active meta-learning then arises to select only the most informative instances to be labelled. Experiments were performed in different scenarios, algorithms for meta-learning and strategies to select datasets. Our experiments revealed that it is possible to reduce the computational cost of generating meta-examples, while maintaining a good meta-learning performance.
2016
Autores
Boström, Henrik; Knobbe, ArnoJ.; Soares, Carlos; Papapetrou, Panagiotis;
Publicação
IDA
Abstract
2016
Autores
Saleiro, P; Gomes, L; Soares, C;
Publicação
Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering, C3S2E '16, Porto, Portugal, July 20-22, 2016
Abstract
The automatic content analysis of mass media in the social sciences has become necessary and possible with the raise of social media and computational power. One particularly promising avenue of research concerns the use of sentiment analysis in microblog streams. However, one of the main challenges consists in aggregating sentiment polarity in a timely fashion that can be fed to the prediction method. We investigated a large set of sentiment aggregate functions and performed a regression analysis using political opinion polls as gold standard. Our dataset contains nearly 233 000 tweets, classified according to their polarity (positive, negative or neutral), regarding the five main Portuguese political leaders during the Portuguese bailout (2011-2014). Results show that different sentiment aggregate functions exhibit different feature importance over time while the error keeps almost unchanged. © 2016 ACM.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.