2024
Autores
Silva, IOe; Soares, C; Cerqueira, V; Rodrigues, A; Bastardo, P;
Publicação
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part III
Abstract
TadGAN is a recent algorithm with competitive performance on time series anomaly detection. The detection process of TadGAN works by comparing observed data with generated data. A challenge in anomaly detection is that there are anomalies which are not easy to detect by analyzing the original time series but have a clear effect on its higher-order characteristics. We propose Meta-TadGAN, an adaptation of TadGAN that analyzes meta-level representations of time series. That is, it analyzes a time series that represents the characteristics of the time series, rather than the original time series itself. Results on benchmark datasets as well as real-world data from fire detectors shows that the new method is competitive with TadGAN. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Autores
Baghcheband, H; Soares, C; Reis, LP;
Publicação
Proceedings of the Discovery Science Late Breaking Contributions 2024 (DS-LB 2024) co-located with 27th International Conference Discovery Science 2024 (DS 2024), Pisa, Italy, 14-16 October 2024.
Abstract
The Machine Learning Data Market (MLDM), which relies on multi-agent systems, necessitates robust negotiation strategies to ensure efficient and fair transactions. The Contract Net Protocol (CNP), a well-established negotiation strategy within Multi-Agent Systems (MAS), offers a promising solution. This paper explores the integration of CNP into MLDM, proposing the CNP-MLDM model to facilitate data exchanges. Characterized by its task announcement and bidding process, CNP enhances negotiation efficiency in MLDM. This paper describes CNP tailored for MLDM, detailing the proposed protocol following experimental results. © 2022 Copyright for this paper by its authors.
2024
Autores
Inácio, R; Cerqueira, V; Barandas, M; Soares, C;
Publicação
CoRR
Abstract
2024
Autores
Santos, M; de Carvalho, A; Soares, C;
Publicação
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS
Abstract
Time series forecasting is an important tool for planning and decision-making. Considering this, several forecasting algorithms can be used, with results depending on the characteristics of the time series. The recommendation of the most suitable algorithm is a frequent concern. Metalearning has been successfully used to recommend the best algorithm for a time series analysis task. Additionally, it has been shown that decomposition methods can lead to better results. Based on previously published studies, in the experiments carried out, time series components were used. This work proposes and empirically evaluates METAFORE, a new time series forecasting approach that uses seasonal trend decomposition with Loess and metalearning to recommend suitable algorithms for time series forecasting combinations. Experimental results show that METAFORE can obtain a better predictive performance than single models with statistical significance. In the experiments, METAFORE also outperformed models widely used in the state-of-the-art, such as the long short-term memory neural network architectures, in more than 70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$70\%$$\end{document} of the time series tested. Finally, the results show that the joint use of metalearning and time series decomposition provides a competitive approach to time series forecasting.
2024
Autores
Alves, VM; Cardoso, JD; Gama, J;
Publicação
NUCLEAR MEDICINE AND MOLECULAR IMAGING
Abstract
Purpose 2-[F-18]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for classification of pulmonary nodules from 2-[F-18]FDG PET images.Methods One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[F-18]FDG PET images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used.Results The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455-1.0000) in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for an optimised decision threshold that assigns a higher cost to false negatives.Conclusion A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[F-18]FDG PET images.
2024
Autores
Castilho, D; Souza, TTP; Kang, SM; Gama, J; de Carvalho, ACPLF;
Publicação
KNOWLEDGE AND INFORMATION SYSTEMS
Abstract
We propose a model that forecasts market correlation structure from link- and node-based financial network features using machine learning. For such, market structure is modeled as a dynamic asset network by quantifying time-dependent co-movement of asset price returns across company constituents of major global market indices. We provide empirical evidence using three different network filtering methods to estimate market structure, namely Dynamic Asset Graph, Dynamic Minimal Spanning Tree and Dynamic Threshold Networks. Experimental results show that the proposed model can forecast market structure with high predictive performance with up to 40%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40\%$$\end{document} improvement over a time-invariant correlation-based benchmark. Non-pair-wise correlation features showed to be important compared to traditionally used pair-wise correlation measures for all markets studied, particularly in the long-term forecasting of stock market structure. Evidence is provided for stock constituents of the DAX30, EUROSTOXX50, FTSE100, HANGSENG50, NASDAQ100 and NIFTY50 market indices. Findings can be useful to improve portfolio selection and risk management methods, which commonly rely on a backward-looking covariance matrix to estimate portfolio risk.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.