Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2025

Interpretable Rules for Online Failure Prediction: A Case Study on the Metro do Porto dataset

Autores
Jakobs, M; Veloso, B; Gama, J;

Publicação
CoRR

Abstract

2025

A Deep Learning Framework for Medium-Term Covariance Forecasting in Multi-Asset Portfolios

Autores
Reis, P; Serra, AP; Gama, J;

Publicação
CoRR

Abstract

2025

On-device edge learning for IoT data streams: a survey

Autores
Lourenço, A; Rodrigo, J; Gama, J; Marreiros, G;

Publicação
CoRR

Abstract

2025

In-context learning of evolving data streams with tabular foundational models

Autores
Lourenço, A; Gama, J; Xing, EP; Marreiros, G;

Publicação
CoRR

Abstract

2025

DFDT: Dynamic Fast Decision Tree for IoT Data Stream Mining on Edge Devices

Autores
Lourenço, A; Rodrigo, J; Gama, J; Marreiros, G;

Publicação
CoRR

Abstract

2025

Efficient Instance Selection in Tree-Based Models for Data Streams Classification

Autores
Paim, AM; Gama, J; Veloso, B; Enembreck, F; Ribeiro, RP;

Publicação
Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing, SAC 2025, Catania International Airport, Catania, Italy, 31 March 2025 - 4 April 2025

Abstract
The learning from continuous data streams is a relevant area within machine learning, focusing on the creation and updating of predictive models in real time as new data becomes available for training and prediction. Among the most widely used methods for this type of task, Hoeffding Trees are highly valued for their simplicity and robustness across a variety of applications and are considered the primary choice for generating decision trees in data stream contexts. However, Hoeffding Trees tend to continuously expand as new data is incorporated, resulting in increased processing time and memory consumption, often without providing significant gains in accuracy. In this study, we propose an instance selection scheme that combines different strategies to regularize Hoeffding Trees and their variants, mitigating excessive growth without compromising model accuracy. The method selects misclassified instances and a fraction of correctly classified instances during the training phase. After extensive experimental evaluation, the instance selection scheme demonstrates superior predictive performance compared to the original models (without selection), for both real and synthetic datasets for data streams, using a reduced subset of examples. Additionally, the method achieves relevant improvements in processing time, model complexity, and memory consumption, highlighting the effectiveness of the proposed instance selection scheme. Copyright © 2025 held by the owner/author(s).

  • 5
  • 497