Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por LIAAD

2022

Bank Statements to Network Features: Extracting Features Out of Time Series Using Visibility Graph

Autores
Shaji, N; Gama, J; Ribeiro, RP; Gomes, P;

Publicação
ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022

Abstract
Non-traditional data like the applicant's bank statement is a significant source for decision-making when granting loans. We find that we can use methods from network science on the applicant's bank statements to convert inherent cash flow characteristics to predictors for default prediction in a credit scoring or credit risk assessment model. First, the credit cash flow is extracted from a bank statement and later converted into a visibility graph or network. Afterwards, we use this visibility network to find features that predict the borrowers' repayment behaviour. We see that feature selection methods select all the five extracted features. Finally, SMOTE is used to balance the training data. The model using the features from the network and the standard features together is shown having superior performance compared to the model that uses only the standard features, indicating the network features' predictive power.

2022

Combining Multiple Data Sources to Predict IUCN Conservation Status of Reptiles

Autores
Soares, N; Goncalves, JF; Vasconcelos, R; Ribeiro, RP;

Publicação
ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022

Abstract
Biodiversity loss is a hot topic. We are losing species at a high rate, even before their extinction risk is assessed. The International Union for Conservation of Nature (IUCN) Red List is the most complete assessment of all species conservation status, yet it only covers a small part of the species identified so far. Additionally, many of the existing assessments are outdated, either due to the ever-evolving nature of taxonomy, or to the lack of reassessments. The assessment of the conservation status of a species is a long, mostly manual process that needs to be carefully done by experts. The conservation field would gain by having ways of automating this process, for instance, by prioritising the species where experts and financing should focus on. In this paper, we present a pipeline used to derive a conservation dataset out of openly available data and obtain predictions, through machine learning techniques, on which species are most likely to be threatened. We applied this pipeline to the different groups within the Reptilia class as a model of one of the most under-assessed taxonomic groups. Additionally, we compared the performance of models using datasets that include different sets of predictors describing species ecological requirements and geographical distributions such as IUCN's area and extent of occurrence. Our results show that most groups benefit from using ecological variables together with IUCN predictors. Random Forest appeared as the best method for most species groups, and feature selection was shown to improve results.

2022

Data-Driven Predictive Maintenance

Autores
Gama, J; Ribeiro, RP; Veloso, B;

Publicação
IEEE INTELLIGENT SYSTEMS

Abstract

2022

MetroPT2: A Benchmark dataset for predictive maintenance

Autores
Veloso, B; Gama, J; Ribeiro, RP; Pereira, P;

Publicação

Abstract

2022

Turning the Tables: Biased, Imbalanced, Dynamic Tabular Datasets for ML Evaluation

Autores
Jesus, S; Pombal, J; Alves, D; Cruz, AF; Saleiro, P; Ribeiro, RP; Gama, J; Bizarro, P;

Publicação
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022

Abstract

2022

Model Optimization in Imbalanced Regression

Autores
Silva, A; Ribeiro, RP; Moniz, N;

Publicação
DISCOVERY SCIENCE (DS 2022)

Abstract
Imbalanced domain learning aims to produce accurate models in predicting instances that, though underrepresented, are of utmost importance for the domain. Research in this field has been mainly focused on classification tasks. Comparatively, the number of studies carried out in the context of regression tasks is negligible. One of the main reasons for this is the lack of loss functions capable of focusing on minimizing the errors of extreme (rare) values. Recently, an evaluation metric was introduced: Squared Error Relevance Area (SERA). This metric posits a bigger emphasis on the errors committed at extreme values while also accounting for the performance in the overall target variable domain, thus preventing severe bias. However, its effectiveness as an optimization metric is unknown. In this paper, our goal is to study the impacts of using SERA as an optimization criterion in imbalanced regression tasks. Using gradient boosting algorithms as proof of concept, we perform an experimental study with 36 data sets of different domains and sizes. Results show that models that used SERA as an objective function are practically better than the models produced by their respective standard boosting algorithms at the prediction of extreme values. This confirms that SERA can be embedded as a loss function into optimization-based learning algorithms for imbalanced regression scenarios.

  • 69
  • 466