Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por Dalila Fontes

2020

Optimization of Sustainable Single-Machine Scheduling Problem : Short Research Paper, CSCI-ISCI

Autores
Homayouni S.M.; Fontes D.B.M.M.;

Publicação
Proceedings - 2020 International Conference on Computational Science and Computational Intelligence, CSCI 2020

Abstract
This work considers sustainable scheduling of manufacturing operations and preventive maintenance activities in a single-machine environment where the machine works continuously in three eight-hour shifts per day. The jobs can be produced at different processing speeds, which reduces energy consumption and/or processing times. In a tri-objective mixed integer linear programming model, sustainability is attained through minimizing total weighted earliness/ tardiness - economic pillar, total energy consumption - environmental pillar, and number of undesired activities - social pillar. Moreover, a multi-objective genetic algorithm finds near optimal solutions in a timely manner. Numerical results will be presented at the conference.

2022

Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review

Autores
Fernandes, JMRC; Homayouni, SM; Fontes, DBMM;

Publicação
SUSTAINABILITY

Abstract
Energy efficiency has become a major concern for manufacturing companies not only due to environmental concerns and stringent regulations, but also due to large and incremental energy costs. Energy-efficient scheduling can be effective at improving energy efficiency and thus reducing energy consumption and associated costs, as well as pollutant emissions. This work reviews recent literature on energy-efficient scheduling in job shop manufacturing systems, with a particular focus on metaheuristics. We review 172 papers published between 2013 and 2022, by analyzing the shop floor type, the energy efficiency strategy, the objective function(s), the newly added problem feature(s), and the solution approach(es). We also report on the existing data sets and make them available to the research community. The paper is concluded by pointing out potential directions for future research, namely developing integrated scheduling approaches for interconnected problems, fast metaheuristic methods to respond to dynamic scheduling problems, and hybrid metaheuristic and big data methods for cyber-physical production systems.

2022

Energy-Efficient Scheduling of Intraterminal Container Transport

Autores
Homayouni, SM; Fontes, DBMM;

Publicação
Springer Optimization and Its Applications

Abstract
Maritime transportation has been, historically, a major factor in economic development and prosperity since it enables trade and contacts between nations. The amount of trade through maritime transport has increased drastically; for example, about 90% of the European Union’s external trade and one-third of its internal trade depend on maritime transport. Major ports, typically, incorporate multiple terminals serving containerships, railways, and other forms of hinterland transportation and require interterminal and intraterminal container transport. Many factors influence the productivity and efficiency of ports and hence their economic viability. Moreover, environmental concerns have been leading to stern regulation that requires ports to reduce, for example, greenhouse gas emissions. Therefore, port authorities need to balance economic and ecological objectives in order to ensure sustainable growth and to remain competitive. Once a containership moors at a container terminal, several quay cranes are assigned to the ship to load/unload the containers to/from the ship. Loading activities require the containers to have been previously made available at the quayside, while unloading ones require the containers to be removed from the quayside. The containers are transported between the quayside and the storage yard by a set of vehicles. This chapter addresses the intraterminal container transport scheduling problem by simultaneously scheduling the loading/unloading activities of quay cranes and the transport (between the quayside and the storage yard) activities of vehicles. In addition, the problem includes vehicles with adjustable travelling speed, a characteristic never considered in this context. For this problem, we propose bi-objective mixed-integer linear programming (MILP) models aiming at minimizing the makespan and the total energy consumption simultaneously. Computational experiments are conducted on benchmark instances that we also propose. The computational results show the effectiveness of the MILP models as well as the impact of considering vehicles with adjustable speed, which can reduce the makespan by up to 16.2% and the total energy consumption by up to 2.5%. Finally, we also show that handling unloading and loading activities simultaneously rather than sequentially (the usual practice rule) can improve the makespan by up to 34.5% and the total energy consumption by up to 18.3%. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2014

Multicriteria Decision Making: A Case Study in the Automobile Industry

Autores
Oliveira, M; Fontes, D; Pereira, T;

Publicação
Annals of Management Science

Abstract

2022

Job-shop scheduling-joint consideration of production, transport, and storage/retrieval systems

Autores
Fontes, DBMM; Homayouni, SM; Resende, MGC;

Publicação
JOURNAL OF COMBINATORIAL OPTIMIZATION

Abstract
This paper proposes a new problem by integrating the job shop scheduling, the part feeding, and the automated storage and retrieval problems. These three problems are intertwined and the performance of each of these problems influences and is influenced by the performance of the other problems. We consider a manufacturing environment composed of a set of machines (production system) connected by a transport system and a storage/retrieval system. Jobs are retrieved from storage and delivered to a load/unload area (LU) by the automated storage retrieval system. Then they are transported to and between the machines where their operations are processed on by the transport system. Once all operations of a job are processed, the job is taken back to the LU and then returned to the storage cell. We propose a mixed-integer linear programming (MILP) model that can be solved to optimality for small-sized instances. We also propose a hybrid simulated annealing (HSA) algorithm to find good quality solutions for larger instances. The HSA incorporates a late acceptance hill-climbing algorithm and a multistart strategy to promote both intensification and exploration while decreasing computational requirements. To compute the optimality gap of the HSA solutions, we derive a very fast lower bounding procedure. Computational experiments are conducted on two sets of instances that we also propose. The computational results show the effectiveness of the MILP on small-sized instances as well as the effectiveness, efficiency, and robustness of the HSA on medium and large-sized instances. Furthermore, the computational experiments clearly shown that importance of optimizing the three problems simultaneous. Finally, the importance and relevance of including the storage/retrieval activities are empirically demonstrated as ignoring them leads to wrong and misleading results.

2021

Production and transport scheduling in flexible job shop manufacturing systems

Autores
Homayouni, SM; Fontes, DBMM;

Publicação
JOURNAL OF GLOBAL OPTIMIZATION

Abstract
This paper addresses an extension of the flexible job shop scheduling problem by considering that jobs need to be moved around the shop-floor by a set of vehicles. Thus, this problem involves assigning each production operation to one of the alternative machines, finding the sequence of operations for each machine, assigning each transport task to one of the vehicles, and finding the sequence of transport tasks for each vehicle, simultaneously. Transportation is usually neglected in the literature and when considered, an unlimited number of vehicles is, typically, assumed. Here, we propose the first mixed integer linear programming model for this problem and show its efficiency at solving small-sized instances to optimality. In addition, and due to the NP-hard nature of the problem, we propose a local search based heuristic that the computational experiments show to be effective, efficient, and robust.

  • 7
  • 13