Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por José Miguel Almeida

2019

Real-Time LiDAR-based Power Lines Detection for Unmanned Aerial Vehicles

Autores
Azevedo, F; Dias, A; Almeida, J; Oliveira, A; Ferreira, A; Santos, T; Martins, A; Silva, E;

Publicação
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)

Abstract
The growing dependence of modern-day societies on electricity increases the importance of effective monitoring and maintenance of power lines. Endowing UAVs with the appropriate sensors for inspecting power lines, the costs and risks associated with the traditional foot patrol and helicopter-based inspections can be reduced. However, this implies the development of algorithms to make the inspection process reliable and autonomous. Visual methods are usually applied to locate the power lines and their components, but poor light conditions or a background rich in edges may compromise their results. To overcome those limitations, we propose to address the problem of power line detection and modeling based on LiDAR. A novel approach to the power line detection was developed, the PL2DM -Power Line LiDAR-based Detection and Modeling. It is based in a scan-by-scan adaptive neighbor minimalist comparison for all the points in a point cloud. The power line final model is obtained by matching and grouping several line segments, using their collinearity properties. Horizontally, the power lines are modeled as a straight line, and vertically as a catenary curve. The algorithm was validated with a real dataset, showing promising results both in terms of outputs and processing time, adding real-time object-based perception capabilities for other layers of processing.

2019

Low Cost Underwater Acoustic Positioning System with a Simplified DoA Algorithm

Autores
Guedes, P; Viana, N; Silva, J; Amaral, G; Ferreira, H; Dias, A; Almeida, JM; Martins, A; Silva, EP;

Publicação
OCEANS 2019 MTS/IEEE SEATTLE

Abstract
For the context of a mobile tracking system, an underwater acoustic positioning system was developed, using three hydrophones to compute the direction of an acoustic source relative to an Autonomous Surface Vehicle (ASV). The paper presents an algorithm for the Direction of Arrival (DoA) of an acoustic source, which allows to estimate its position. Preliminary results will be shown in this paper relative to the detection and identification (ID) of the acoustic sources, as well as an analysis of the proposed algorithm. The solution allows the position estimation of an acoustic source, which can be used in tracking solutions. The system can be applied in an ASV or fixed buoys, as long as the baseline's hydrophones are at equal angular distances. The main objective is to track targets with the DoA algorithm as well to estimate their position, improving what was done in [1].

2020

Teaching Robotics with a Simulator Environment Developed for the Autonomous Driving Competition

Autores
Fernandes, D; Pinheiro, F; Dias, A; Martins, A; Almeida, J; Silva, E;

Publicação
ROBOTICS IN EDUCATION: CURRENT RESEARCH AND INNOVATIONS

Abstract
Teaching robotics based on challenge of our daily lives is always more motivating for students and teachers. Several competitions of self-driving have emerged recently, challenging students and researchers to develop solutions addressing the autonomous driving systems. The Portuguese Festival Nacional de Rob ' otica (FNR) Autonomous Driving Competition is one of those examples. Even though the competition is an exciting challenger, it requires the development of real robots, which implies several limitations that may discourage the students and compromise a fluid teaching process. The simulation can contribute to overcome this limitation and can assume an important role as a tool, providing an effortless and costless solution, allowing students and researchers to keep their focus on the main issues. This paper presents a simulation environment for FNR, providing an overall framework able to support the exploration of robotics topics like perception, navigation, data fusion and deep learning based on the autonomous driving competition.

2020

Real-time GNSS precise positioning: RTKLIB for ROS

Autores
Ferreira, A; Matias, B; Almeida, J; Silva, E;

Publicação
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS

Abstract
The global navigation satellite system (GNSS) constitutes an effective and affordable solution to the outdoor positioning problem. When combined with precise positioning techniques, such as the real time kinematic (RTK), centimeter-level positioning accuracy becomes a reality. Such performance is suitable for a whole new range of demanding applications, including high-accuracy field robotics operations. The RTKRCV, part of the RTKLIB package, is one of the most popular open-source solutions for real-time GNSS precise positioning. Yet the lack of integration with the robot operating system (ROS), constitutes a limitation on its adoption by the robotics community. This article addresses this limitation, reporting a new implementation which brings the RTKRCV capabilities into ROS. New features, including ROS publishing and control over a ROS service, were introduced seamlessly, to ensure full compatibility with all original options. Additionally, a new observation synchronization scheme improves solution consistency, particularly relevant for the moving-baseline positioning mode. Real application examples are presented to demonstrate the advantages of our rtkrcv_ros package. For community benefit, the software was released as an open-source package.

2020

Underwater Localization System Combining iUSBL with Dynamic SBL in VAMOS! Trials

Autores
Almeida, J; Matias, B; Ferreira, A; Almeida, C; Martins, A; Silva, E;

Publicação
SENSORS

Abstract
Emerging opportunities in the exploration of inland water bodies, such as underwater mining of flooded open pit mines, require accurate real-time positioning of multiple underwater assets. In the mining operation scenarios, operational requirements deny the application of standard acoustic positioning techniques, posing additional challenges to the localization problem. This paper presents a novel underwater localization solution, implemented for the VAMOS! project, based on the combination of raw measurements from a short baseline (SBL) array and an inverted ultrashort baseline (iUSBL). An extended Kalman filter (EKF), fusing IMU raw measurements, pressure observations, SBL ranges, and USBL directional angles, estimates the localization of an underwater mining vehicle in 6DOF. Sensor bias and the speed of sound in the water are estimated indirectly by the filter. Moreover, in order to discard acoustic outliers, due to multipath reflections in such a confined and cluttered space, a data association layer and a dynamic SBL master selection heuristic were implemented. To demonstrate the advantage of this new technique, results obtained in the field, during the VAMOS! underwater mining field trials, are presented and discussed.

2015

Rail vehicle localization exploiting rail track georeferenced coordinates

Autores
Ferreira, AJ; Almeida, JM; Silva, E;

Publicação
U.Porto Journal of Engineering

Abstract
A novel dead reckoning algorithm conceived for localization of small inspection rail vehicles in Global Navigation Satellite System (GNSS) denied environments is presented. This work focus on simplifying the rail vehicle localization task, taking into account restrictions on movement imposed by the railroad tracks. Considering that dead reckoning techniques accumulate errors over time, leading to increasing global uncertainty, a method was designed to correct the estimates and also smooth trajectory errors backwards in time, through visualization of global landmarks. Results show the effectiveness of this approach in reducing long-term position errors. The current document reports real railroad experiments, featuring a specially designed non-motorized mobile modeling vehicle.

  • 11
  • 18